Chapter 5
Part-of-Speech Tagging

Parts-of speech

Tagset

POS

Conjunction Junction, what's your function?
Bob Dorough, Schoolhouse Rock, 1973

A gnostic was seated before a grammarian. The grammarian said, ‘A word must be
one of three things: either it is a noun, a verb, or a particle” The gnostic tore his robe
and cried, ‘Alas! Twenty years of my life and striving and seeking have gone to the winds,
Sor Ilaboured greaily in the hope that there was another word owtside of this. Now vou
have destroved my hope” Though the gnostic had already attained the word which was
his purpose, he spoke thus in order fo arouse the grammarian.

Rumi (1207-1273), The Discourses aof Rumi, Translated by A. J. Arberry

Dionysius Thrax of Alexandria (c. 100 B.C.}, or perhaps someone else (exact author-
ship being understandably difficult to be sure of with texts of this vintage), wrote a
grammatical sketch of Greek (a “rechné™) that summarized the linguistic knowledge of
his day. This work is the direct source of an astonishing proportion of our modern lin-
guistic vocabulary, including among many other words, syniax, diphthong, clitic, and
analogy. Also included are a description of eight parts-of-speech: noun, verb, pro-
noun, preposition, adverb, conjunction, participle, and article. Although earlier schol-
ars (including Aristotle as well as the Stoics) had their own lists of parts-of-speech, it
was Thrax's set of eight that became the basis for practically all subsequent part-of-
speech descriptions of Greek, Latin, and most European languages for the next 2000
years,

Schoolhouse Rock was a popular series of 3-minute musical animated clips first
aired on television in 1973, The series was designed to inspire kids to learn multi-
plication tables, grammar, basic science, and history. The Grammar Rock sequence,
for example, included songs about parts-of-speech, thus bringing these categories into
the realm of popular culture. As it happens, Grammar Rock was remarkably tradi-
tional in its grammatical notation, including exactly eight songs about parts-of-speech.
Although the list was slightly modified from Thrax’s original, substituting adjective
and interjection for the original participle and article, the astonishing durability of the
parts-of-speech through two millenia is an indicator of both the importance and the
transparency of their role in human language.

More recent lists of parts-of-speech (or tagsets) have many more word classes; 45
for the Penn Treebank (Marcus et al., 1993), 87 for the Brown corpus (Francis, 1979,
Francis and Kudera, 1982), and 146 for the C7 tagset (Garside et al., 1997).

The significance of parts-of-speech (also known as POS, word classes, morpho-
logical classes, or lexical tags) for language processing is the large amount of informa-
tion they give about a word and its neighbors. This is clearly true for major categories,

124 Chapter 5.

Part-of-Speech Tagging

(verb versus moun), but it is also true for the many finer distinctions. For example,
these tagsets distinguish between possessive pronouns (my, your, his, her, its) and per-
sonal pronouns ([, veu, he, me). Knowing whether a word is a possessive pronoun or a
personal pronoun can tell us what words are likely to occur in its vicinity (possessive
pronouns are likely to be followed by a noun, personal pronouns by a verb). This can
be useful in a language model for speech recognition.

A word’s part of speech can tell us something about how the word is pronounced.
As Chapter § discusses, the word content, for example, can be a noun or an adjective.
They are pronounced differently (the noun is pronounced COMNrent and the adjective
conTENT). Thus, knowing the part of speech can produce more natural pronuncia-
tions in a speech synthesis system and more accuracy in a speech recognition system.
{Other pairs like this include OBject (noun) and obJECT (verb), DIScount (noun) and
disCOUNT (verb); see Cutler (1986).)

Parts-of-speech can also be used in stemming for informational retrieval (IR), since
knowing a word’s part of speech can help tell us which morphological affixes it can
take, as we saw in Chapter 3. They can also enhance an IR application by selecting
nouns or other important words from a document. Automatic assignment of part of
speech plays a role in parsing, in word sense disambiguation algorithms, and in shallow
parsing of texts to quickly find names, times, dates, or other named entities for the
information extraction applications discussed in Chapter 22. Finally, corpora that have
been marked for parts-of-speech are useful for linguistic research. For example, they
can help find instances or frequencies of particular constructions.

This chapter focuses on computational methods for assigning parts-of-speech to
words (part-of-speech tagging). Many algorithms have been applied to this prob-
lem, including hand-written rules (rule-based tagging), statistical methods (HMM
tagging and maximum entropy tagging), and other methods like transformation-
bhased tagging and memory-based tagging. We introduce three of these algorithms
in this chapter: rule-based tagging, HMM tagging, and transformation-based tagging.
But before turning to the algorithms themselves, let's begin with a summary of English
word classes and of various tagsets for formally coding these classes.

5.1 (Mostly) English Word Classes

Closed class
Open class

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give a more complete definition of these and other classes. Tradition-
ally, the definition of parts-of-speech has been based on syntactic and morphological
function; words that function similarly with respect to what can occur nearby (their
“syntactic distributional properties”) or with respect to the affixes they take (their mor-
phological properties) are grouped into classes. While word classes do have tendencies
toward semantic coherence (nouns do in fact often describe “people, places, or things”,
and adjectives often describe properties), this is not necessarily the case, and in general
we don't use semantic coherence as a definitional criterion for parts-of-speech.
Parts-of-speech can be divided into two broad supercategories: closed class types
and open class types. Closed classes are those that have relatively fixed membership.

Section 5.1. (Mostly) English Word Classes 125

Function word

Noun

Proper noun
Common noun

Count nouns

Mass noun

Yerh

Awcxiligry

Adjfective

For example, prepositions are a closed class because there is a fixed set of them in
English; new prepositions are rarely coined. By contrast, nouns and verbs are open
classes because new nouns and verbs are continually coined or borrowed from other
langnages (e.g., the new verb fo fax or the borrowed noun futen). It is likely that any
given speaker or corpus will have different open class words, but all speakers of a lan-
guage, and corpora that are large enough, will likely share the set of closed class words.
Closed class words are also generally function words like of, it, and, or you, which
tend to be very short, oceur frequently, and often have structuring uses in grammar,

Four major open classes occur in the languages of the world: nouns, verbs, adjec-
tives, and adverbs. It turns out that English has all four of these, although not every
langnage does.

Noun is the name given to the syntactic class in which the words for most peo-
ple, places, or things occur. But since syntactic classes like noun are defined syntac-
tically and morphologically rather than semantically, some words for people, places,
and things may not be nouns, and conversely, some nouns may not be words for people,
places, or things. Thus, nouns include concrete terms like ship and chair, abstractions
like bandwidth and relationship, and verb-like terms like pacing as in His pacing 1o
and fro became guite annoying. What defines a noun in English, then, are things like
its ability to occur with determiners (a goat, its bandwidth, Plato’s Republic), to take
possessives (IBM's annual revenue), and for most but not all nouns to occur in the
plural form {goats, abaci).

Nouns are traditionally grouped into proper nouns and common nouns. Proper
nouns, like Regina, Colorado, and IBM, are names of specific persons or entities. In
English, they generally aren’t preceded by articles (e.g., the book is upstairs, but Regina
is upstairs). In written English, proper nouns are usually capitalized.

In many languages, including English, common nouns are divided into count nouns
and mass nouns. Count nouns are those that allow grammatical enumeration; that is,
they can occur in both the singular and plural (geat/goats, relationship/relationships)
and they can be counted (one goat, two goats). Mass nouns are used when something
is conceptualized as a homogeneous group. So words like snow, salt, and communism
are not counted (i.e., *two snows or *two communisms). Mass nouns can also appear
without articles where singular count nouns cannot (Snow is white but not *Goat is
white).

The verb class includes most of the words referring to actions and processes, in-
cluding main verbs like draw, provide, differ, and go. As we saw in Chapter 3, English
verbs have a number of morphological forms (non-third-person-sg (eat), third-person-
sg (eats), progressive (eating), past participle (eafen)). A subclass of English verbs
called auxiliaries is discussed when we turn to closed class forms.

While many researchers believe that all human languages have the categories of
noun and verb, others have argued that some languages, such as Riau Indonesian and
Tongan, don’t even make this distinction {Broschart, 1997; Evans, 2000; Gil, 2000).

The third open class English form is adjectives; semantically this class includes
many terms that describe properties or qualities. Most languages have adjectives for
the concepts of color (white, black), age (old, young), and value (good, bad), but there
are languages without adjectives. In Korean, for example, the words corresponding

126 Chapter 5.

Part-of-Speech Tagging

Adverb

Locative
Degree

Manner

Temiporal

Prepositions

Particle

Phrasal verk

to English adjectives act as a subclass of verbs, so what is in English an adjective
“beautiful” acts in Korean like a verb meaning “to be beautiful” (Evans, 2000).

The final open class form, adverbs, is rather a hodge-podge, both semantically
and formally. For example, Schachter (1985) points out that in a sentence like the
following, all the italicized words are adverbs:

Unfortunately, John walked home extremely slowly vesterday

What coherence the class has semantically may be solely that each of these words
can be viewed as modifying something (often verbs, hence the name “adverb”, but
also other adverbs and entire verb phrases). Directional adverbs or locative adverbs
(home, here, downhill) specify the direction or location of some action; degree adverhs
(extremely, very, somewhat) specify the extent of some action, process, or property;
manner adverbs (slowly, slinkily, delicately) describe the manner of some action or
process; and temporal adverbs describe the time that some action or event took place
(vesrerday, Monday). Because of the heterogeneous nature of this class, some adverbs
(e.g., temporal adverbs like Monday) are tagged in some tagging schemes as nouns.

The closed classes differ more from language to language than do the open classes.
Here’s a quick overview of some of the more important closed classes in English, with
a few examples of each:

prepositions: on, under, over, near, by, at, from, to, with
determiners: a, an, the

pronouns: she, who, I, others

conjunctions: and, but, or, as, if, when

auxiliary verbs: can, may, should, are

particles: up, down, on, off, in, out, at, by

numerals: one, two, three, first, second, third

" ® & & * @& @

Prepositions occur before noun phrases; semantically they are relational, often
indicating spatial or temporal relations, whether literal (on it, before then, by the house)
or metaphorical (on time, with gusto, beside herself). But they often indicate other
relations as well (Hamlet was written by Shakespeare, and [from Shakespeare] “And I
did laugh sans intermission an hour by his dial”). Figure 5.1 shows the prepositions
of English according to the CELEX online dictionary (Baayen et al., 1995), sorted
by their frequency in the COBUILD 16-million-word corpus of English. Figure 5.1
should not be considered a definitive list, since different dictionaries and tagsets label
word classes differently. Furthermore, this list combines prepositions and particles.

A particle is a word that resembles a preposition or an adverb and is used in com-
bination with a verb. Particles often have extended meanings that aren’t quite the same
as the prepositions they resemble:

He arose slowly and brushed himself off.
... she had turned the paper over.

When a verb and a particle behave as a single syntactic and/or semantic unit, we call
the combination a phrasal verb. Phrasal verbs can behave as a semantic unit; thus, they
often have a meaning that is not predictable from the separate meanings of the verb and
the particle. Thus, furn down means something like ‘reject’, rule out means ‘eliminate’.

Section 5.1. (Mostly) English Word Classes 127

Determiner
Article

ConjuRctions

of 540,085 through 14964 worth 1,563 pace 12
in 331,235 after 13,670 towvard 1.390 nigh 9
for 142.42] between 13,275 plus 750 re 4
to 125,691 under 9.525 till G86 mid k]
with 124,965 per 6.515 amongst 525 o'er 2
on 109,129 among 5,080 via 351 but 0
at 100,164 within 5,030 amid 222 ere 0
by T7.794 towards 4,700 underneath 164 less 1]
from 74,843 above 3056 versus 113 midst 0
about 38428 near 2026 amidst 67 o 0
than 20,210 off 1,605 sans 20 thru 0
over 18,071 pasit 1,575 circa 4 vice 0

(AU Prepositions (and particles) of English from the CELEX online dictionary. Fre-
quency counts are from the COBUILD 16-million-word corpus.

find out 1s “discover’, and go on is ‘continue’; these are not meanings that could have
been predicted from the meanings of the verb and the particle independently. Here are
some examples of phrasal verbs from Thoreau:

So I went on for some days cutting and hewing timber. ..
Moral reform is the effort to throw off sleep. ..

We show in Fig. 5.2 a list of single-word particles from Quirk et al. (1985). Since it
is extremely hard to automatically distinguish particles from prepositions, some tagsets
(like the one used for CELEX) do not distinguish them, and even in corpora that do (like
the Penn Treebank), the distinction is very difficult to make reliably in an automatic
process, so we do not give counts,

aboard aside besides forward(s) Opposite through
about astray hetween home ot throughout
above away beyond in outside together
across back by mside over under
ahead before close instead overhead underneath
alongside behind down near past up

apart below east, elc. off round within
around beneath eastwardi s).etc. on since without

5

T Enelish single-word particles from Quirk et al. { [985).

A closed class that occurs with nouns, often marking the beginning of a noun
phrase, is the determiners. One small subtype of determiners is the articles: English
has three articles: a, an, and the. Other determiners include this (as in this chapter)
and that (as in that page). A and an mark a noun phrase as indefinite, while the can
mark it as definite; definiteness is a discourse and semantic property that is discussed
in Chapter 21. Articles are quite frequent in English; indeed, the is the most frequently
occurring word in most corpora of written English. Here are COBUILD statistics,
again out of 16 million words:

the: 1,071,676 a; 413,887 an: 59,359

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunctions
like and, or, and but, join two elements of equal status. Subordinating conjunctions are

128 Chapter 5.

Part-of-Speech Tagging

Complementizer

Pronoun
Personal

Passessive

Wi

Awexiliary

Copula
Modal

used when one of the elements is of some sort of embedded status. For example, that
in “I thought that you might like some milk” is a subordinating conjunction that links
the main clause [rhought with the subordinate clause you might like some milk. This
clause is called subordinate because this entire clause is the “content” of the main verb
thought. Subordinating conjunctions like thar which link a verb to its argument in this
way are also called complementizers. Chapter 12 and Chapter 15 discuss complemen-
tation in more detail. Figure 5.3 lists English conjunctions.

and 514946 yet 3,040 considering 174 forasmuch as
that 134.773 singce 4,843 lest 131 however 0
but 06,889 where 3.952 albeit 104 immediately
or T6.563 nor 3078 providing 96 in as far as 0
as 54608 once 2826 whereupon 85 insofaras]
if 33917 unless 2,205 seeing 63 inasmuchas 0
when 37,975 why 1.333 directly 26 insomuch as 0
because 23,626 now 1,290 ere 12 insomuch that 0
S0 12,933 neither 1.120 notwithstanding 3 like 0
before 10,720 whenever 913 according as 0 neither nor U]
though 10,329 whereas B6T asif 0 now that 0
than 9,511 except 864 as long as 0 only [y
while 8144 il 686 as though 0 provided that 0
after 7042 provided 594 both and 0 providing that 0
whether 5,978 whilst 351 but that 0 seging as 0
for 5.935 suppose 281 but then 0 seeing as how 0
although 5424 cos 188 but then again 00 seeing that 0
until 5072 supposing 185 eitheror 0 without 0

[AMEE] Coordinating and subordinating conjunctions of English from CELEX. Frequency
counts are from COBUILD (16 million words).

Pronouns are forms that often act as a kind of shorthand for referring to some noun
phrase or entity or event. Personal pronouns refer to persons or entities (vou, she, I,
it, me, etc.). Possessive pronouns are forms of personal pronouns that indicate either
actual possession or more often just an abstract relation between the person and some
object (my, your, his, her, its, one's, our, their). Wh-pronouns (what, whe, whom, who-
ever) are used in certain guestion forms, or may also act as complementizers (Frida,
who married Diego. ..). Figure 5.4 shows English pronouns, again from CELEX.

A closed class subtype of English verbs are the auxiliary verbs. Cross-linguistically,
auxiliaries are words (usually verbs) that mark certain semantic features of a main verb,
including whether an action takes place in the present, past, or future (tense), whether
it is completed (aspect), whether it is negated (polarity), and whether an action is nec-
essary, possible, suggested, desired, etc. (mood).

English auxiliaries include the copula verb be, the two verbs do and have, along
with their inflected forms, as well as a class of modal verbs. Be is called a copula
because it connects subjects with certain kinds of predicate nominals and adjectives
(He is a duck). The verb have is used, for example, to mark the perfect tenses (/ have
gone, I had gone), and be is used as part of the passive (We were robbed) or progressive
(We are leaving) constructions. The modals are used to mark the mood associated with
the event or action depicted by the main verb. So can indicates ability or possibility.
may indicates permission or possibility, must indicates necessity, and so on. In addition
to the perfect have mentioned above, there is a modal verb have (e.g., I have to go).
which is common in spoken English. Neither it nor the modal verb dare, which is

Interjection
Negative

Section 5.1. (Mostly) English Word Classes 129

it 199,920 how 13,137 yvourself 2,437 no one 106
1 198,139 another 12,551 why 2,220 wherein 58
he 158.366 where 11,857 little 2,089 double 39
you 128,688 same 11,841 none 1,992 thine 30
his 99,820 something 11,754 nobody 1,684 summat 22
they BE 416 each 11,320 further 1,666 suchlike 18
this £4,027 both 10,930 everybody 1,474 fewest 15
that 82,603 last 10,816 ourselves 1,428 thyself 14
she 73,966 every 9,788 mine 1,426 whomever 11
her 69,004 himself 9,113 somebody 1,322 whosoever 10
we 64,846 nothing 9,026 former 1.177 whomsoever 8
all 61,767 when 8,336 past 084 wherefore 6
which 61,399 one 7423 plenty 5940 whereat 3
their 51,922 much 7,237 either 248 whatsoever 4
what 50,116 anything 6,937 yours 826 whereon 2
my 46,791 next 6,047 neither 618 whoso 2
him 45,024 themselves 5,990 fewer 536 aught 1
me 43,071 st 5.115 hers 482 howsoever 1
who 42,881 itself 5032 ours 458 thrice 1
them 42,099 myself 4.819 whoever 391 wheresoever 1
no 33,458 everything 4,662 least 386 you-all 1
some 32,863 several 4,306 twice 382 additional 0
other 29,391 less 4,278 theirs 303 anybody 0
your 28,923 herself 4,016 wherever 280 each other 0
its 27,783 whose 4,005 oneself 239 once 0
our 23,020 someone 3,755 thou 229 one another 0
these 22,697 certain 3,345 ‘un 227 overmuch 0
any 22,666 anyone 3,318 ye 192 suchand such 0
more 21,873 whom 3,229 thy 191 whate’er 0
many 17,343 enough 3,197 whereby 176 whenever 0
such 16,880 half 3,065 thee 166 whereof 0

15,819 few 2,933 yourselves 148 whereto 0

15,741 gveryons 2,812 latter 142 whereunto 0

15,724 whatever 2.571 whichever 121 whichsoever 0

Figure 5.4

from the COBUILD 16-million-word corpus.

Pronouns of English from the CELEX online dictionary. Freguency counts are

Fisure 5.5

can 70,930
will 69,206
may 25,802
would 18,448
should 17,760
must 16,520
need 9,955
can’t 6,375

might 5,580
couldn’t 4,265
shall 4,118
wouldn't 3,548
won't 3,100
d 2,299
ought 1,845
will 862

shouldn't %58
mustn't 332
I 175
needn't 148
mightn't 68
oughm't 44
mayn’t 3

dare, have 777

English modal verbs from the CELEX online dictionary. Frequency counts are
from the COBUILD 16-million-word corpus.

rare, have frequency counts because the CELEX dictionary does not distinguish the
main verb sense ([have three oranges, He dared me to eat them) from the modal sense
{There has to be some mistake, Dare I confront him?), from the non-modal auxiliary
verb sense (I have never seen thar). Figure 5.5 lists English modal verbs.

English also has many words of more or less unique function, including interjec-
tions (oh, ah, hey, man, alas, uh, um), negatives (ne, not), politeness markers (please,
thank you), greetings (hello, goodbye), and the existential there (there are two on the

130 Chapter 5. Part-of-Speech Tagging

table) among others. Whether these classes are assigned particular names or lumped
together (as interjections or even adverbs) depends on the purpose of the labeling.

5.2 Tagsets for English

The previous section broadly described some syntactic classes for English words. This
section fleshes out that sketch by describing the actual tagsets used in part-of-speech
tagging, in preparation for introducing various tagging algorithms.

Most of the popular tagsets for English evolved from the 87-tag tagset used for
the Brown corpus (Francis, 1979; Francis and Kucera, 1982). The Brown corpus is a
million-word collection of samples from 500 written texts from different genres (news-
paper, novels, non-fiction, academic, etc.), which was assembled at Brown University
in 1963-1964 (Kucera and Francis, 1967; Francis, 197%; Francis and Kulera, 1982).
This corpus was tagged with parts-of-speech first with the TAGGIT program and then
by hand-correction of the tags.

Besides this original Brown tagset, shown in Figs. 5.7-5.8, two of the most com-
monly used tagsets are the small 45-tag Penn Treebank tagset (Marcus et al., 1993},
shown in Fig. 5.6, and the medium-sized 61-tag C5 tagset, shown in Fig. 5.9, used by
the Lancaster UCREL project’s CLAWS (the Constituent Likelihood Automatic Word-
tagging System) tagger to tag the British National Corpus (BNC) (Garside et al., 1997).

We focus our discussion on the widely used Penn Treebank set, shown in Fig. 5.6,
which has been applied to the Brown corpus, the Wall Street Journal corpus, and the
Switchboard corpus among others. We discuss difficult tagging decisions as well as
some useful distinctions made in the larger tagsets. Here are some examples of tagged
sentences from the Penn Treebank version of the Brown corpus (we represent a tagged
word by placing the tag after each word, delimited by a slash):

(5.1) The/DT grand/JJ jury/NN commented/VBD on/IN /DT number/NN of/ TN
other/JJ topics/NNS /.

(5.2) There/EX are/VBP 70/CD children/NNS there/RB

(5.3) Although/IN preliminary/JJ findings/NNS were/VBD reported/VBN
more/RBR than/IN a/DT year/NN ago/IN /, the/DT latest/JIS resultis/NNS
appear/VBP in/IN today/NN 's/POS New/NNP England/NNP Journal/NNP
of/ IN Medicine/NNP ./,

Example (5.1) shows phenomena that we discussed in the previous section; the de-
terminers the and a, the adjectives grand and other, the common nouns jury, number,
and ropics, the past tense verb commented. Example (5.2) shows the use of the EX
tag to mark the existential rhere construction in English, and, for comparison, another
use of rhere which is tagged as an adverb (RB). Example (5.3) shows the segmenta-
tion of the possessive morpheme 's and shows an example of a passive construction,
‘were reported’, in which the verb reporred is marked as a past participle (VBN), rather
than a simple past (VBD). Note also that the proper noun New England is tagged NNP.
Finally, note that since New England Journal of Medicine is a proper noun, the Tree-

Section 5.2 Tagsets for English 131
Tag Description Example Tag Description Example
cC coordin, conjunction and, but, or SYM symbol +,50, &
CD cardinal number one, two, three 0 “w” to
DT determiner a, the UH interjection ah, cops
EX existential ‘there’ there VB wverb, base form eaf
Fw foreign word mea culpa VBD wverh, past tense dre
N preposition/sub-conj of, in, by VBG wverb, gerund eating
1] adjective yellow VBN verb, past participle earen
JIR adj., comparative bigger YBP wverb, non-3sg pres ear
IS adj., superlative wildest VBZ verh, 3sg pres ears
LS list iterm marker 1,2, One WDT wh-determiner which, that
MD modal can, should WP wh-pronoun whar, who
NN noun, sing. or mass Hama WP3 possessive wh- whose
NNS noun, plural lamas WRB wh-adverb how, where
NNP proper noun, singular IBM 5 dollar sign 3
NNPS proper noun, plural Carolinas # pound sign #
PDT predeterminer all, both * left quote for®
POS possessive ending] " right quote Tor™
PRP personal pronoun 1, vou, he i left parenthesis LG{.<
FRP% possessive pronoun your, one's)| right parenthesis Lyh=
RB adverb guickly, never . comma .
RBR adverb, comparative faster sentence-final punc . ! ?
RBS adverb, superlative fastest mid-sentence punc : ;.. =--
RF particle up, off

m— Penn Treebank part-of-speech tags (including punctuation).

bank tagging chooses to mark each noun in it separately as NNP, including journal and
medicine, which might otherwise be labeled as common nouns (NN).

Some tagging distinctions are quite hard for both humans and machines to make.
For example, prepositions (IN), particles (RP), and adverbs (RB) can have a large over-
lap. Words like around can be all three:

(3.4) Mrs./NNP Shaefer/NNFP never/RB got/VED around/RP to/TO joining/VBG
(3.5) AlDT we/PRF gona/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
(5.6) Chateaw/NNP Petrus/NNP costs/VBZ around/RB 250/CD

Making these decisions requires sophisticated knowledge of syntax; tagging man-
uals (Santorini, 1990) give various heuristics that can help human coders make these
decisions and that can also provide useful features for automatic taggers. For example,
two heuristics from Santorini (1990) are that prepositions generally are associated with
a following noun phrase (although they also may be followed by prepositional phrases)
and that the word around is tagged as an adverb when it means “approximately”. Fur-
thermore, particles often can either precede or follow a noun phrase object, as in the
following examples:

(5.7) She told off/RP her friends
(5.8) She told her friends off/RP.

Prepositions, on the other hand, cannot follow their noun phrase (* marks an un-
grammatical sentence, a concept we return to in Chapter 12);

132 Chapter 3.

Part-of-Speech Tagging

(5.9) She stepped off/IN the train
(5.10) *She stepped the train off/IN.

Another difficulty is labeling the words that can modify nouns. Sometimes the
modifiers preceding nouns are common nouns like cotton, below; other times the Tree-
bank tagging manual specifies that modifiers be tagged as adjectives (e.g., if the mod-
ifier is a hyphenated common noun like income-tax) and other times as proper nouns
{for modifiers that are hyphenated proper nouns like Gramm-Rudman):

(5.11) cotton/NN sweater/NN
(5.12) income-tax/J] return/NN
(5.13) the/DT Gramm-Rudman/NP Act/NP

Some words that can be adjectives, common nouns, or proper nouns are tagged in
the Treebank as common nouns when acting as modifiers:

(5.14) Chinese/NN cooking/NN
(5.15) Pacific/NN waters/NNS

A third known difficulty in tagging is distinguishing past participles (VBN) from
adjectives (J1). A word like married is a past participle when it is being used in an
eventive, verbal way, as in (5.16) below, and is an adjective when it is being used to
express a property, as in (5.17):

(5.16) They were married/VBN by the Justice of the Peace yesterday at 5:00.
(5.17) At the time, she was already married/JJ.

Tagging manuals like Santorini (1990) give various helpful criteria for deciding
how *verb-like” or “eventive’ a particular word is in a specific context.

The Penn Treebank tagset was culled from the original 87-tag tagset for the Brown
corpus. This reduced set leaves out information that can be recovered from the identity
of the lexical item. For example the original Brown and C3 tagsets include a separate
tag for each of the different forms of the verbs do (e.g., C5 tag VDD for did and VDG
for doing), be, and have. These were omitted from the Treebank set.

Certain syntactic distinctions were not marked in the Penn Treebank tagset because
Treebank sentences were parsed, not merely tagged, and so some syntactic information
is represented in the phrase structure. For example, the single tag IN is used for both
prepositions and subordinating conjunctions since the tree-structure of the sentence
disambiguates them (subordinating conjunctions always precede clauses, prepositions
precede noun phrases or prepositional phrases). Most tagging situations, however, do
not involve parsed corpora; for this reason, the Penn Treebank set is not specific enough
for many uses. The original Brown and C3 tagsets, for example, distinguish preposi-
tions (IN) from subordinating conjunctions (CS}, as in the following examples:

(5.18) after/CS spending/VBG a/AT day/NN at/IN the/AT Brown/NP Palace/NN
(5.19) after/IN a/AT wedding/NN trip/NN to/IN Corpus/NP Christi/NP ./. i

The original Brown and C5 tagsets also have two tags for the word ro; in Brown |
the infinitive use is tagged TO, and the prepositional use as IN;

(5.20) to/TO give/VB priority/NN to/IN teacher/NN pay/NN raises/NNS

Section 5.3. Part-of-Speech Tagging 133

Brown also has the tag NR for adverbial nouns like home, west, Monday, and 1o-
morrow. Because the Treebank lacks this tag, it has a much less consistent policy for
adverbial nouns; Monday, Tuesday, and other days of the week are marked NNP, romor-
row, west, and home are marked sometimes as NN, sometimes as RB. This makes the
Treebank tagset less useful for high-level NLP tasks like the detection of time phrases.

Nonetheless, the Treebank tagset has been the most widely used in evaluating tag-
ging algorithms, so many of the algorithms we describe below have been evaluated
mainly on this tagset, Of course, whether a tagset is useful for a particular application
depends on how much information the application nceds.

5.3 Part-of-Speech Tagging

Tagging

Ambiguous

Resolution

Desarmbriguition

Part-of-speech tagging (or just tagging for short) is the process of assigning a part of
speech or other syntactic class marker to each word in a corpus. Because tags are gen-
erally also applied to punctuation, tagging requires that the punctuation marks (period,
comma, etc) be separated from the words. Thus, tokenization of the sort described
in Chapter 3 is usually performed before, or as part of, the tagging process, separat-
ing commas, quotation marks, etc., from words and disambiguating end-of-sentence
punctuation (period, question mark, etc.) from part-of-word punctuation (such as in
abbreviations like e.g. and efc.)

The input to a tagging algorithm is a string of words and a specified tagset of the
kind described in the previous section. The output is a single best tag for each word. For
example, here are some sample sentences from the ATIS corpus of dialogues about air-
travel reservations that we discuss in Chapter 12, For each we have shown a potential
tagged output using the Penn Treebank tagset defined in Fig. 5.6 on page 131:

(3.21) Book/VB that/DT flight/NN ./,
(5.22) Does/VBZ that/DT fight/NN serve/VB dinner/NN 7/.

The previons section discussed some tagging decisions that are difficult to make
for humans. Ewven in these simple examples, automatically assigning a tag to each
word is not trivial. For example, book is ambiguous. That is, it has more than one
possible usage and part-of-speech. -t can be a verb (as in book that flight or to book
the suspect) or a noun (as in hand me that book or a beok of matches). Similarly, that
can be a determiner (as in Does that flight serve dinner) or a complementizer (as in [
thoughr that vour flight was earlier). The problem of POS-tagging is (o resolve these
ambiguities, choosing the proper tag for the context. Part-of-speech tagging is thus one
of the many disambiguation tasks we see in this book.

How hard is the tagging problem? The previous section described some difficult
tagging decisions; how common is tag ambiguity? It turns out that most words in
English are unambiguous; that is, they have only a single tag. But many of the most
common words of English are ambiguous (for example, can can be an auxiliary (‘to
be able’), a noun (*a metal container’), or a verb (‘to put something in such a metal
container’}). In fact, DeRose (1988) reports that while only 11.5% of English word
types in the Brown corpus are ambiguous, over 40% of Brown tokens are ambiguous.

134 Chapter 5.

Part-of-Speech Tagging

Tag Description Example
(opening parenthesis i/
) closing parenthesis Iy
¥ negator not, n't
. COMITA .
- dash -
sentence terminator P!
: colon ;
ABL pre-qualifier quite, rather, such
ABN pre-quantifier half, all
ABX pre-quantifier, double conjunction both
AP post-determiner many, next, several, last
AT article a, the, an, no, a, every

BE/BEDVBEDZ/BEG/BEM/BEN/BER/BEZ

cC coordinating conjunction

CD cardinal numeral

Cs subordinating conjunction
DODOD/DOZ

DT singular determiner

DTI singular or plural determiner
DTS plural determiner

DTX determiner, double conjunction
EX existential there
HY/HVD/HVG/HVN/HVZ

IN preposition

11 adjective

1R comparative adjective

115 semantically superlative adj.
nT morphologically superlative adj.
MD modal auxiliary

NN (common) singular or mass noun
NN§ possessive singular common noun
NNS plural common noun

NNS§ possessive plural noun

NP singular proper noun

NP§ possessive singular proper noun
NPS plural proper noun

NPS$ possessive plural proper noun
NR adverbial noun

NRS possessive adverbial noun

NRS plural adverbial noun

oD ordinal numeral

PN nominal pronoun

PN% possessive nominal pronoun
PP3 possessive personal pronoun
PP$% second possessive personal pronoun
PPL singular reflexive personal pronoun
PPLS plural reflexive pronoun

PPO objective personal pronoun

PPS Jrd. sg. nominative pronoun
PPSS other nominative pronoun

QL qualifier

QLP post-gualifier

RB adverb

RBR comparative adverb

RBT superlative adverb

RN nominal adverb

Figure 5.7
special hyphenated tags are omitted from this list.

beiwereiwasibeinglam/been/arelis
and, or, bue, either, neither
wo, 2, 1962, million

that, as, after, whether, before
do, did, does

this, that

SCHHE, iy

these, those, them

either, neither

therg

have, had, having, had, has
af, in, for, by, ro, on, at

better, greater, higher, larger, lower
main, top, principal, chief, key, foremost
best, greatest, highest, largest, latest, worst
would, will, can, could, may, must, should
time, world, work, school, family, door
Jather’s, year's, city's, earth’s

years, people, things, children, problems
children’s, artist’s parent’s years'
Kennedy, England, Rachel, Congress
Plate's Fauliner's Viola's

Americans, Democrats, Chinese
Yankees', Gershwins' Earthmen's

home, west, tomarrow, Friday, North
todday's, vesterday's, Sunday’s, South's
Sundays, Fridays

second, 2nd, twenry-first, mid-rwentieth
are, something, nothing, anyone, none
ane's, someone’s, anyoneg's

his, their, her, its, my, our, your

mine, his, ours, vours, theirs

miyself, herself

ourselves, themselves

me, us, him

he, she, it

I, we, they

very, too, most, quite, almost, extremely
encugh, indeed

later, more, better, longer, further
best, most, highest, nearest
here, then

7

First part of original 87-tag Brown corpus tagset (Francis and Kuéera, 1982}, Four

Section 5.4, Rule-Based Part-of-Speech Tagging 135

Description Example

adverb or particle across, off, up

infinitive marker 0

interjection, exclamation well, oh, say, please, okay, uh, goodbye
verb, base form make, undersiand, try, determine, drop
verb, past tense said, went, looked, brought, reached, kept
verb, present participle, gerund getting, writing, increasing

verb, past participle made, given, found, called, required
verb, 3rd singular present says, follows, requires, ranscends

wh= determiner what, which

possessive wh- pronoun whose

objective wh- pronoun whom, which, that

nominative wh- pronoun who, which, thar

how

wh- adverb hew, when

Rest of 87-tag Brown corpus tagset (Francis and Kodera, 1982),

Figure 5.10 shows the number of word types with different levels of part-of-speech
ambiguity from the Brown corpus. We show these computations from two versions of
the tagged Brown corpus, the original tagging done at Brown by Francis and Kucera
(1982), and the Treebank-3 tagging done at the University of Pennsylvania. Note that
despite having more coarse-grained tags, the 45-tag corpus unexpectedly has more
ambiguity than the 87-tag corpus.

Luckily, it turns out that many of the 40% ambiguous tokens are easy to disam-
biguate. This is because the various tags associated with a word are not equally likely.
For example, a can be a determiner or the letter a (perhaps as part of an acronym or an
initial}. But the determiner sense of a is much more likely.

Lae-based iagger Most tagging algorithms fall into one of two classes: rule-based taggers and prob-
abilistic or stochastic taggers taggers. Rule-based taggers generally involve a large
database of hand-written disambiguation rules that specify, for example, that an am-
biguous word is a noun rather than a verb if it follows a determiner. The next section
describes a sample rule-based tagger, EngCG, based on the Constraint Grammar ar-
chitecture of Karlsson et al. (1995).

Stochastic taggers generally resolve tagging ambiguities by using a training cor-
pus to compute the probability of a given word having a given tag in a given context.

HMM tagger Section 5.5 describes the hidden Markov model, or HMM tagger.
Finally, Section 5.6 describes an approach to tagging called the transformation-
Brill tagger based tagger, or the Brill tagger, after Brill (1995). The Brill tagger shares features
of both tagging architectures. Like the rule-based tagger, it is based on rules that deter-
mine when an ambiguous word should have a given tag. Like the stochastic taggers, it
has a machine-learning component: the rules are automatically induced from a previ-
ously tagged training corpus.

34 Rule-Based Part-of-Speech Tagging

The earliest algorithms for automatically assigning part-of-speech were based on a two-
stage architecture (Harris, 1962; Klein and Simmons, 1963; Greene and Rubin, 1971},

136 Chapter 5.

Part-of-Speech Tagging

Tag Description Example

AJO adjective (unmarked) good, old

AlC comparative adjective better, older
AlS superlative adjective best, oldest
ATO article the, a, an

AVO adverb (unmarked) aften, well, longer, furthest
AVP adverb particle up, aff, out
AV(Q wh-adverb when, how, why
CIC coordinating conjunction and, or

CJS subordinating conjunction although, when
CIT the conjunction that

CRD cardinal numeral (except one) 3, twenty-five, 734
DPS possessive determiner your, their

DTO general determiner these, some
D10 wh-determiner whose, which
EX0 existential there

ITI interjection or other isolate of, ves, mbm
NNO noun {neutral for number) airerafi, data
NNI singular noun pencil, goose
NN2 plural noun pencils, geese
NPO proper noun London, Michael, Mars
ORD ordinal sixth, 77th, last
PNI indefinite pronoun none, everything
PNP personal pronoun you, them, ours
PNG wh-pronoun who, whoever
PNX reflexive pronoun itself, ourselves
POS possessive ‘sor

PRF the preposition of

PRP preposition {except af) Sor, above, 1o
PUL punctuation — left bracket (or|

PUN puncruation — general mark N R
PUQ punctuation — guotation mark L

PUR punctuation — right bracket Jor]

TOO infinitive marker to

UNC unclassified items (not English)

VBB base forms of be (except infinitive) ai, are

VBD past form of be WS, Were

VBG -ing form of be being

VBI infinitive of be

VBN past participle of be been

VBZ -5 form of be is, ‘s

VDB/DVG/I/N/Z form of do
VHB/D/G/UN/E form of have

do, does, did, doing, to do
have, had, having, to have

VMO modal auxiliary verb can, could, will, 'l
VVB base form of lexical verb (except infin.) tuke, live

VvVD past tense form of lexical verb took, lived

VVG -ing form of lexical verb raking, living

WV infinitive of lexical verb take, live

VVN past participle form of lex. verb taken, lived

VVZ -5 form of lexical verb takes, lives

XX0 the negative nof or n't

£Z0 alphabetical symbol ABcd

UCREL's C5 tagset for the British National Corpus (Garside et al., 1997).

The first stage used a dictionary to assign each word a list of potential parts-of-speech.
The second stage used large lists of hand-written disambiguation rules to winnow down
this list to a single part of speech for each word.

Section 5.4, Rule-Based Part-of-Speech Tagging 137

EngCG

87-tag Original Brown 45-tag Treebank Brown

Unambiguous (1 tag) 44,019 38,857
Ambiguous (2-7 tags) 5,490 8844
Details: 2 tags 4,967 6,731
3 tags 411 1621
4 tags 91 337
5 tags 17 90
6 tags 2 (well, beat) a2
7 tags 2 (still, down) 6 (well, ser. round,
open. fit, dowit)
8 tags 4 (s, half, back. a)
O tags 3 (that. more. in)

QTUN W The amount of tag ambiguity for word types in the Brown corpus, from the
ICAME release of the original (87-tag) tagging and the Treebank-3 (45-tag) tagging. Numbers
are not strictly comparable because only the Treebank segments 's. An earlier estimate of some
of these numbers is reported in DeRose (1988).

Modern rule-based approaches to part-of-speech tagging have a similar architec-
ture, although the dictionaries and the rulesets are vastly larger than in the 1960s. One
of the most comprehensive rule-based approaches is the Constraint Grammar approach
{Karlsson et al., 1995). In this section we describe a tagger based on this approach, the
EngCG tagger (Voutilainen, 1995, 1999).

The EngCG ENGTWOL lexicon is based on the two-level morphology described
in Chapter 3 and has about 56,000 entries for English word stems (Heikkild, 1995),
counting a word with multiple parts-of-speech (e.g.. nominal and verbal senses of hir)
as separate entries and not counting inflected and many derived forms. Each entry is
annotated with a set of morphological and syntactic features, Figure 5.11 shows some
selected words, together with a slightly simplified listing of their features, as used in
rule writing.

Word POS Additional POS features
smaller ADJ COMPARATIVE
fast ADYV SUPERLATIVE
that DET CENTRAL DEMONSTRATIVE SG
all DET PREDETERMINER. SG/PL QUANTIFIER
dog’s M GENITIVE 5G
furniture N NOMINATIVE S5G NOINDEFDETERMINER
one-third NUM 5G
she PROMN PERSONAL FEMININE NOMINATIVE 5G3
show W PRESENT -58G3 VFIN
show N NOMINATIVE 5G
shown PCP2 SV SV SV
occurred PCP2 5
occurred v ~ PAST VFIN SY
IITNE] Lexical entries in the ENGTWOL lexicon (Voutilainen, 1995, Heikkild, 1995).

Most of the features in Fig. 5.11 are relatively self-explanatory; SG for singular,
-SG3 for other than third-person singular. NOMINATIVE means non-genitive, and
PCP2 means past participle. PRE, CENTRAL, and POST are ordering slots for deter-

138 Chapter 5.

Part-of-Speech Tagging

Subcategorization
Complemenitation

miners (predeterminers (all) come before determiners (the): all the president’s men).
NOINDEFDETERMINER means that words like furniture do not appear with the in-
definite determiner a. SV, SVO, and SVOO specify the subcategorization or com-
plementation pattern for the verb. Subcategorization is discussed in Chapter 12 and
Chapter 15, but briefly SV means the verb appears solely with a subject (nothing oc-
curred); SVO with a subject and an object (I showed the film); SVOO with a subject
and two complements (She showed her the ball).

In the first stage of the tagger, each word is run through the two-level lexicon trans-
ducer and the entries for all possible parts-of-speech are returned. For example, the
phrase Pavlov had shown thar salivation ... would return the following list (one line
per possible tag, with the correct tag shown in boldface):

Pavlov PAVLOV N NOM SG PROPER
had HAYE ¥ PAST YFIN 5YVO
HAVE PCP2 SVO
shown SHOW PCP2 SVOO SV0O 5V
that ADV
PRON DEM SG
DET CENTRAL DEM SG
Cs
salivation N NOM SG

EngCG then applies a large set of constraints (as many as 3,744 constraints in
the EngCG-2 system) to the input sentence to rule out incorrect parts-of-speech. The
boldfaced entries in the table above show the desired result, in which the simple pasi
tense tag (rather than the past participle tag) is applied to had and the complementizer
(CS) tag is applied to that. The constraints are used in a negative way, to eliminate
tags that are inconsistent with the context. For example, one constraint eliminates all
readings of rthar except the ADV (adverbial intensifier) sense (this is the sense in the
sentence it isn't that odd). Here’s a simplified version of the constraint:

ADVERBIAL-THAT RULE
Given input: “that”
if
(+1 AJADVIQUANT); /= if next word is adj, adverb, or guantifier «/
{+2 SENT-LIM); { « and following which is a sentence boundary, +/
(NOT -1 SVOC/A); / » and the previous word is not a verb like =/
/w ‘consider’ which allows adjs as object complements =/
then eliminate non-ADV tags
else eliminate ADV tag

The first two clauses of this rule check to see that the thar directly precedes a
sentence-final adjective, adverb, or quantifier. In all other cases, the adverb reading is
eliminated. The last clause eliminates cases preceded by verbs like consider or believe
that can take a noun and an adjective; this is to avoid tagging the following instance of
that as an adverb:

I consider that odd.

Section 5.5, HMM Part-of-Speech Tagging 139

Another rule is used to express the constraint that the complementizer sense of that
is most likely to be used if the previous word is a verb that expects a complement (like
believe, think, or show), and if that is followed by the beginning of a noun phrase and
a finite verb.

This description oversimplifies the EngCG architecture; the system also includes
probabilistic constraints and also makes use of other syntactic information we haven’t
discussed. The interested reader should consult Karlsson et al. (1995) and Voutilainen
(1999),

5.5 HMM Part-of-Speech Tagging

The use of probabilities in tags is quite old; probabilities in tagging were first used by
Stolz et al. (1963), a complete probabilistic tagger with Viterbi decoding was sketched
by Bahl and Mercer (1976), and various stochastic taggers were built in the 19805
{Marshall, 1983; Garside, 1987; Church, 1988; DeRose, 1988). This section describes
a particular stochastic tagging algorithm generally known as the hidden Markov model
or HMM tagger. Hidden Markov models themselves are more fully introduced and
defined in Chapter 6. In this section, we prefigure Chapter 6 a bit by introducing the
hidden Markov model as applied to part-of-speech tagging.

Use of a hidden Markov model to do part-of-speech tagging, as we define it, i1s a

inforence special case of Bayesian inference, a paradigm that has been known since the work of
Bayes (1763). Bayesian inference or Bayesian classification was applied successfully
to language problems as early as the late 19505, including the OCR work of Bledsoe
in 1959 and the seminal work of Mosteller and Wallace (1964) on applying Bayesian
inference to determine the anthorship of the Federalist papers.

In a classification task, we are given some observation(s) and our job is to determine
which of a set of classes it belongs to. Part-of-speech tagging is generally treated as a
sequence classification task. So here the observation is a sequence of words (let’s say
a sentence), and it is our job to assign them a sequence of part-of-speech tags.

For example, say we are given a sentence like

(5.23) Secretariat is expected (0 race WmMorrow.

What is the best sequence of tags that corresponds to this sequence of words? In
Bayesian inference, we start by considering all possible sequences of classes—in this
case, all possible sequences of tags. Out of this universe of tag sequences, we want
to choose the tag sequence that is most probable given the observation sequence of
n words wi. In other words, we want, out of all sequences of n tags 1] the single tag

* sequence such that P(r]'|w]) is highest. We use the hat notation * to mean “our estimate
of the correct tag sequence”.

1} = argmax P(r]|w)) (5.24)
o

The function argmax, f(x) means “the x such that f(x) is maximized”. Equa-
tion 5.24 thus means, that out of all tag sequences of length n, we want the particular tag

140 Chapter 5.

Part-of-Speech Tagging

Prior probability
Likelihood

sequence 1|’ that maximizes the right-hand side. While Eq. 5.24 is guaranteed to give
us the optimal tag sequence, it is not clear how to make the equation operational, that
is, for a given tag sequence ¢ and word sequence w{, we don’t know how to directly
compute Pt} |[w]).

The intuition of Bayesian classification is to use Bayes' rule to transform Eq. 5.24
into a set of other probabilities, which turn out to be easier to compute. Bayes' rule
is presented in Eq. 5.25; it gives us a way to break down any conditional probability
P{x|y) into three other probabilities:

Ptdy)==fl%£25§fl (5.25)

We can then substitute Eq. 5.25 into Eq. 5.24 to get Eq. 5.26:

P(wI e Pt

fl = R Ly Ll o E5 5.26

1 argrrpax Pl “'T:' i)
1

We can conveniently simplify Eq. 5.26 by dropping the denominator P(w]). Why

is that? Since we are choosing a tag sequence out of all tag sequences, we will be

gt "
computing ﬂf#{'%[_‘ﬁ for each tag sequence. But P(w{) doesn’t change for each tag
I

sequence; we are always asking about the most likely tag sequence for the same obser-
vation w{, which must have the same probability P(w}). Thus, we can choose the tag
sequence that maximizes this simpler formula:

il = argmax P(w{|e!) P(1]) (5.27)

rﬂ

1
To summarize, we compute the most probable tag sequence {} given some word
string w by multiplying two probabilities for each tag sequence and choosing the tag

sequence for which this product is greatest. The two terms are the prior probability
of the tag sequence P(r]') and the likelihood of the word string P(w]|]'):

likelihood prior
p—,
i = argmax P(wi|t]) P(t]) (5.28)
i ’

Unfortunately, Eq. 5.28 is still too hard to compute directly. HMM taggers therefore
make two simplifying assumptions. The first assumption is that the probability of a
word appearing depends only on its own part-of-speech tag; that is, it is independent
of other words around it and of the other tags around it;

P =~ [P(wilt) (5.29)

i=1

The second assumption is that the probability of a tag appearing is dependent only
on the previous tag, rather than the entire tag sequence. This is the bigram assumption

Section 5.5. HMM Part-of-Speech Tagging 141

that we saw in Chapter 4:
P(f) =~ [[Pllt-r) (5.30)
i=1

Plugging the simplifying assumptions Eq. 5.29 and Eq. 5.30 into Eq. 5.28 results
in the following equation by which a bigram tagger estimates the most probable tag
sequence:

"
it = argmax P(¢] |w]) ~ argmax | | P(w:t;) P(t:lti1) (5.31)
n N

i=|

Equation 5.31 contains two kinds of probabilities, tag transition probabilities and
word likelihoods. Let’s take a moment to see what these probabilities represent. The
tag transition probabilities, P(;|t;—1), represent the probability of a tag given the previ-
ous tag. For example, determiners are very likely to precede adjectives and nouns, as in
sequences like that/DT flight/ NN and the/DT yellow/JJ hat/NN. Thus we would expect
the probabilities P(NN|DT) and P(JJ|DT) to be high. But in English, adjectives don’t
tend to precede determiners, so the probability P(DT/IJ) ought to be low.

We can compute the maximum likelihood estimate of a tag transition probability
P(NN|DT) by taking a corpus in which parts-of-speech are labeled and then counting,
out of the times we see DT, how many of those times we see NN after the DT. That is,
we compute the following ratio of counts:

Clti-1,1i)
Clti-1)

Let’s choose a specific corpus to examine. For the examples in this chapter we'll
use the Brown corpus, the million-word corpus of American English described earlier.
The Brown corpus has been tagged twice, once in the 1960s with the 87-tag tagset, and
again in the 1990s with the 45-tag Treebank tagset. This makes it useful for comparing
tagsets, and is also widely available.

In the 45-tag Treebank Brown corpus, the tag DT occurs 116,454 times, Of these,
DT is followed by NN 56,500 times (if we ignore the few cases of ambiguous tags).
Thus, the MLE estimate of the transition probability is calculated as follows:

P(ti|ti—1) = (5.32)

C(DT,NN) 56,509

C(DT) 116,454

The probability of getting a common noun after a determiner, .49, is indeed quite
high, as we suspected.

The word likelihood probabilities, P{w;|t;). represent the probability, given that we
see a given tag, that it will be associated with a given word. For example, if we were
to see the tag VBZ (third-person singular present verb) and guess the verb that is likely
to have that tag, we might likely guess the verb is since the verb to be is so common in
English.

We can compute the MLE of a word likelihood probability like P(is|VBZ) again
by counting, out of the times we see VBZ in a corpus, how many of those times the
VBZ is labeling the word is. That is, we compute the following ratio of counts:

P(NN|DT) =

49 (3.33)

142 Chapter 5.

Part-of-5peech Tagging

C{r!':wi}
g = 5.34
P{W;lf‘:] C{r!'} (}
In Treebank Brown corpus, the tag VBZ occurs 21,627 times, and VBZ is the tag
for is 10,073 times. Thus:

C(VBZ,is) 10,073
C(VBZ) 21,627

P(is|VBZ) = 47 (3.35)

For those readers who are new to Bayesian modeling, note that this likelihood term
is not asking “which is the most likely tag for the word is7” That is, the term is not
P(VBZ|is). Instead, we are computing P(is|VBZ). The probability, slightly counterin-
tuitively, answers the question “If we were expecting a third-person singular verb, how
likely is it that this verb would be is7"

We have now defined HMM tagging as a task of choosing a tag-sequence with the
maximum probability, derived the equations by which we will compute this probability,
and shown how to compute the component probabilities. In fact, we have simplified
the presentation of the probabilities in many ways; in later sections we return to these
equations and introduce the deleted interpolation algorithm for smoothing these counts,
the trigram model of tag history, and a model for unknown words,

But before turning to these augmentations, we need to introduce the decoding algo-
rithm by which these probabilities are combined to choose the most likely tag sequence.

5.5.1 Computing the Most Likely Tag Sequence: An Example

The previous section showed that the HMM tagging algorithm chooses as the most
likely tag sequence the one that maximizes the product of two terms: the probability of
the sequence of tags and the probability of each tag generating a word. In this section
we ground these equations in a specific example, showing for a particular sentence how
the correct tag sequence achieves a higher probability than one of the many possible
Wrong sequences.

We focus on resolving the part-of-speech ambiguity of the word race, which can
be a noun or verb in English, as we show in two examples modified from the Brown
and Switchboard corpus. For this example, we will use the 87-tag Brown corpus tagset
because it has a specific tag for to, TO, used only when ro is an infinitive; prepositional
uses of to are tagged as IN. This will come in handy in our example.'

In (5.36) race is a verb (VB) while in (5.37) race is a common noun (NN):

(5.36) Secretariat/ NNP is/BEZ expected/VBN to/TO race/VB tomorrow/NR

{5.37) People/NNS continue/VB to/TO inquire/VB the/AT reason/NN for/IN the/AT
race/NN for/IN outer/]] space/NN

Let’s look at how race can be correctly tagged as a VB instead of an NN in (5.36).
HMM part-of-speech taggers resolve this ambiguity globally rather than locally, pick-

I The 45-tag Treebank-3 tagset does make this distinction in the Switchboard corpus bul not, alas, in the
Brown corpus. Recall that in the 45-tag tagset time adverbs like tomorrow are tagged as NN, in the 87-tag
tagset they appear as NR.

Section 5.3. HMM Part-of-Speech Tagging 143

ing the best tag sequence for the whole sentence. There are many hypothetically pos-
sible tag sequences for (5.36) since there are other ambiguities in the sentence (e.g.,
expected can be an adjective (II), a past tense/preterite (VBD), or a past participle
(VBN)). But let’s just consider two of the potential sequences, shown in Fig. 5.12.
Note that these sequences differ in only one place: whether the tag chosen for race is
VB or NN.

(a)

Secretariat is expected to race tomorrow

(b)

Secretariat is expected to race tomorrow

m Two of the possible sequences of tags corresponding to the Secretariat sentence,
one of them corresponding to the comrect sequence, in which race is a VB, Each arc in these
graphs would be associated with a probability. Note that the two graphs differ only in three arcs,
hence in three probabilities.

Almost all the probabilities in these two sequences are identical; in Fig. 5.12 we
have highlighted in boldface the three probabilities that differ. Let’s consider two of
these, corresponding to P(#;]t;—1) and P(w;|t;). The probability P(#|f,—1) in Fig. 5.12a
is P(VB|TO), and in Fig. 5.12b the transition probability is P(NN|TO).

The tag transition probabilities P(NN|TO) and P(VB|TO) give us the answer to the
question “How likely are we to expect a verb (noun) given the previous tag?”’ As we
saw in the previous section, the maximum likelihood estimate for these probabilities
can be derived from corpus counts.

Since the (87-tag Brown tagset) tag TO is used only for the infinitive marker fo, we
expect that only a very small number of nouns can follow this marker (as an exercise,
try to think of a sentence where a noun can follow the infinitive marker use of to).
Sure enough, a look at the (87-tag) Brown corpus gives us the following probabilities,
showing that verbs are about 500 times as likely as nouns to occur after TO:

P(NN|TO) = .00047
P(VB|TO) = .83

Let’s now turn to P(w;|t;), the lexical likelihood of the word race given a part-of-
speech tag. For the two possible tags VB and NN, these correspond to the probabilities

144 Chapter 3.

Part-of-Speech Tagging

Weighted

Murkov chain

Hidden Markav
maodel

HMM

P(race|VB) and P(race|NN). Here are the lexical likelihoods from Brown:

P(race|NN) = .00057
P(race|WVB) = .00012

Finally, we need to represent the tag sequence probability for the following tag (in
this case the tag NR for romorrow):

P(NR|VB) = .0027
P(NR|NN) = 0012

If we multiply the lexical likelihoods with the tag sequence probabilities, we see
that the probability of the sequence with the VB tag is higher and the HMM tagger
correctly tags race as a VB in Fig, 5.12 despite the fact that it is the less likely sense of
Face:

P(VB|TO)P(NR|VB)P(race|VB} = 00000027
P(NN|TO)P(NR|NN)P(race|NN) = 00000000032

5.5.2 Formalizing Hidden Markov Model Taggers

Now that we have seen the equations and some examples of choosing the most probable
tag sequence, we show a brief formalization of this problem as a hidden Markov model
{see Chapter 6 for the more complete formalization).

The HMM is an extension of the finite automata of Chapter 3. Recall that a finite
automaton is defined by a set of states and a set of transitions between states that are
taken according to the input observations. A weighted finite-state automaton is a
simple augmentation of the finite automaton in which each arc is associated with a
probability, indicating how likely that path is to be taken. The probability on all the
arcs leaving a node must sum to 1. A Markov chain is a special case of a weighted
automaton in which the input sequence uniguely determines which states the automaton
will go through. Because it can’t represent inherently ambiguous problems, a Markov
chain is only vseful for assigning probabilities to unambiguous sequences.

While the Markov chain is appropriate for situations in which we can see the actual
conditioning events, it is not appropriate in part-of-speech tagging. This is because in
part-of-speech tagging, while we observe the words in the input, we do nor observe
the part-of-speech tags. Thus, we can’t condition any probabilities on, say, a previous
part-of-speech tag, because we cannot be completely certain exactly which tag applied
to the previous word. A hidden Markov model (HMM) allows us to talk both about
observed events (like words that we see in the input) and about hidden events (like
part-of-speech tags) that we think of as causal factors in our probabilistic model.

An HMM is specified by the following components:

Section 5.5. HMM Part-of-Speech Tagging 145

Decoding
Viterbi

O=q192...9¥5 a set of N states.

A=aas...dl ... ey a transition probability matrix A, each a;; rep-
resenting the probability of moving from state |
tostate j, st 30 a =1 Vi

O=om...0r a sequence of T observations, each one drawn
from a vocabulary V = v, va, ..., vy,
B =b;i(o) A sequence of observation likelihoods, also

called emission probabilities, each expressing
the probability of an observation o; being gen-
erated from a state /,

q90:9F a special start state and end (final) state that are
not associated with observations, together with
transition probabilities agjanz ... ap, out of the
start state and ajpasf .. .agr into the end state.

An HMM thus has two kinds of probabilities: the A transition probabilities, and
the B observation likelihoods, corresponding respectively to the prior and likelihood
probabilities that we saw in Eq. 5.31. Figure 5.13 illustrates the prior probabilities in
an HMM part-of-speech tagger, showing three sample states and some of the A tran-
sition probabilities between them. Figure 5.14 shows another view of an HMM part-
of-speech tagger, focusing on the word likelihoods B. Each hidden state is associated
with a vector of likelihoods for each observation word.

The Markov chain corresponding to the hidden states of the HMM. The A transi-
tion probabilities are used to compute the prior probability.

5.5.3 Using the Viterbi Algorithm for HMM Tagging

For any model, such as an HMM, that contains hidden variables, the task of determin-
ing which sequence of variables is the underlying source of some sequence of observa-
tions is called the decoding task. The Viterbi algorithm is perhaps the most common
decoding algorithm used for HMMs, whether for part-of-speech tagging or for speech
recognition, The term Viterbi is common in speech and language processing, but this

146 Chapter 5.

Part-of-Speech Tagging

[BTREAL] The B observation likelihoods for the HMM in the previous figure. Each state
{except the non-emitting start and end states) is associated with a vector of probabilities, one
likelihood for each possible observation word.

is really a standard application of the classic dynamic programming algorithm and
looks a lot like the minimum edit distance algorithm of Chapter 3. The Viterbi al-
gorithm was first applied to speech and language processing in the context of speech
recognition by Vintsyuk (1968) but has what Kruskal (1983) calls a “remarkable history
of multiple independent discovery and publication™; see the Historical Notes section at
the end of Chapter 6 for more details.

The slightly simplified version of the Viterbi algorithm that we present takes as
input a single HMM and a sequence of observed words O = [0y0203...07) and returns
the most probable state/tag sequence Q = (g1924g3 ...gr). together with its probability.

Let the HMM be defined by the two tables in Fig. 5.15 and Fig. 5.16. Figure 5.15
expresses the a;; probabilities, the rransition probabilities between hidden states (ie.,
part-of-speech tags). Figure 5.16 expresses the b;(o,) probabilities, the ebservation
likelihoods of words given tags.

VB TO NN PPSS
<§> 019 0043 041 067
VB 0038 035 047 0070
TO 43 0 00047 0
NN 0040 016 087 0045
PPSS 23 00079 0012 00014

(I ENE] Tag transition probabilities (the a array, p(t|t;—)) computed from the 87-tag
Brown corpus without smoothing. The rows are labeled with the conditioning event; thus
P{PFSS|VB) is 0070, The symbol <> is the start-of-sentence symbol.

Figure 5.17 shows pseudocode for the Viterbi algorithm. The Viterbi algorithm
sets up a probability matrix, with one column for each observation ¢ and one row for
each state in the state graph. Each column thus has a cell for each state g; in the single
combined automaton for the four words,

The algorithm first creates N or four state columns. The first column corresponds
to the observation of the first word i, the second to the second word want, the third to

Section 5.5. HMM Part-of-Speech Tagging 147

I want to race
VB 0 0093 0 00012
TO 0 0 .99 0
NN 0 000054 0 00057
PPSS 37 0 0 0

[ATIEAL] Observation likelihoods (the b array) computed from the 87-tag Brown corpus
without smoothing.

function VITEREIobservations of len T stare-graph of len N) returns best-path

create a path probability matrix viterbifN+2,T]
for each state s from 1 to N do ; initialization step
viterbi[s,1]«—ag ; * bs(o))
backpointer(s,1]+ 0
for each time step ¢ from 2 to T do : Tecursion step
for each state 5 from | to N do

N
L'irsrbi[s,tlhn}ax viterbils',t — 1] * ag ; * bs(ey)
=]
N
backpointer{st] «— argmax _ viterbils' t —1] = ag
=1
N
viterbilgp T]— max viterbi[s,T| » a; 4, ; termination step
=l

N
backpointer[qp T]— argmax viterbils,T] = a; g, : termination step

g]
return the backtrace path by following backpointers to states back in time from
backpointer(gr, T

Bk Viterbi algorithm for finding optimal sequence of tags. Given an observation
sequenoe and an HMM A = (A, B), the algorithm returns the state path through the HMM that
assigns maximum likelihood to the observation sequence. Note that states () and g are non-
emitting.

the third word ro, and the fourth to the fourth word race. We begin in the first column
by setting the Viterbi value in each cell to the product of the transition probability (into
it from the start state) and the observation probability (of the first word); the reader
should find this in Fig. 5.18. '

Then we move on, column by column; for every state in column 1, we compute the
probability of moving into each state in column 2, and so on. For each state g at time
t, we compute the value viterbi[s,t] by taking the maximum over the extensions of all
the paths that lead to the current cell, using the following equation:

w(j) = maxvei (i) ai bylor) (5.38)

The three factors that are multiplied in Eq. 5.38 for extending the previous paths to
compute the Viterbi probability at time r are

148 Chapter 5. Part-of-Speech Tagging

vi~1(i) the previous Viterbi path probability from the previous time step

ajj the transition probability from previous state g; to current state g;
bj(o;) the state observation likelihood of the observation symbol o, given
the current state j

2 " - " PR P
Ggnd U) ! and § ! and i and @
R Yup e R s .

¥, (4h=.041 x 0=0

¥,(21= max{0,0,0,.0055) x 0093 = 000051 Pl

«e @
" & @
% { o {aon

[BMYEAE] The entries in the individual state columns for the Viterbi algorithm. Each cell keeps the probability
of the best path so far and a pointer to the previous cell along that path. We have only filled out columns 0 and 1 and
one cell of column 2; the rest is left as an exercise for the reader. After the cells are filled in, backtracing from the
end state, we should be able to reconstruct the correct state sequence PPSS VB TO VB,

In Fig. 5.18, each cell of the trellis in the column for the word [is computed by
multiplying the previous probability at the start state (1.0), the transition probability
from the start state to the tag for that cell, and the observation likelihood of the word /
given the tag for that cell. As it turns out, three of the cells are zero (since the word /
cannot be NN, TO, or VB). Next, each cell in the want column gets updated with the
maximum probability path from the previous column. We have shown only the value
for the VB cell. That cell gets the max of four values; as it happens in this case, three

Section 5.3, HMM Part-of-Speech Tagging 149

of them are zero (since there were zero values in the previous column). The remaining
value is multiplied by the relevant transition probability, and the (trivial) max is taken.
In this case the final value, .000051, comes from the PPSS state at the previous column.

The reader should fill in the rest of the trellis in Fig. 5.18 and backtrace to recon-
struct the correct state sequence PPSS VB TO VB.

5.5.4 Extending the HMM Algorithm to Trigrams

We mentioned earlier that HMM taggers in actual use have a number of sophistications
not present in the simplified tagger as we have described it so far. One important
missing feature has to do with the tag context. In the tagger described above, we
assume that the probability of a tag appearing is dependent only on the previous tag:

P(if) ~ []P(tlis) (5.39)

Most modern HMM taggers actually use a little more of the history, letting the
probability of a tag depend on the two previous tags:

P(r}) =~ []Pllti-1,ti2) (5.40)
i=1

In addition to increasing the window before a tagging decision, state-of-the-art
HMM taggers like Brants (2000) let the tagger know the location of the end of the
sentence by adding dependence on an end-of-sequence marker for ¢, 5. This gives the
following equation for part-of-speech tagging:

ﬁt = argmaxP(i‘ﬂHﬁ'j 2 argmax HP{Wdfj}P{fjlt;_1,.I‘;_g]- P{I'H+I|Iu:| (5.41)

L ;]
f f i=1

In tagging any sentence with Eq. 5.41, three of the tags used in the context will fall
off the edge of the sentence, and hence will not match regular words. These tags, r-1,
to, and ¢, 11, can all be set to be a single special *sentence boundary” tag that is added to
the tagset. This requires that sentences passed to the tagger have sentence boundaries
demarcated, as discussed in Chapter 3.

There is one large problem with Eq. 5.41: data sparsity. Any particular sequence
of tags t_». 4.1 that occurs in the test set may simply never have occurred in the
training set. That means we cannot compute the tag trigram probability just by the
maximum likelihood estimate from counts, following Eq. 5.42:

Cltia,ti-1,1;)
C{’I—}. fi— }

Why not? Because many of these counts will be zero in any training set, and we will
incorrectly predict that a given tag sequence will never occur! What we need is a way
to estimate P(f;|ti—1,%—2) even if the sequence t;_»,#_1,1; never occurs in the training

data.

Ptilti—1,ti2) = (5.42)

150 Chapter 5.

Part-of-Speech Tagging

Deleted
irterpolation

The standard approach to solving this problem is to estimate the probability by
combining more robust, but weaker estimators. For example, if we’ve never seen the
tag sequence PRP VB TO, and so can’t compute P(TO|PRP,VB) from this frequency,
we still could rely on the bigram probability P(TO|VB), or even the unigram probabil-
ity P(TO). The maximum likelihood estimation of each of these probabilities can be
computed from a corpus with the following counts:

Cltiza,ti-1, 1)

Trigrams P{Iilri—i,i‘;—z]l = —m (5.43)
o C i=1+4

Bigrams P(ti-1) = %_L]';—] (5.44)

Unigrams P(f;) = {% (5.45)

How should these three estimators be combined in order to estimate the trigram
probability P(#;|t;—1,t—2)7 The simplest method of combination is linear interpolation.
In linear interpolation, we estimate the probability P(x;|f;—11;—2) by a weighted sum of
the unigram, bigram, and trigram probabilities:

Ptiltiatiia) = RaP(tiltioitiia) 4+ AaP(tiltioy) + M P(1) (3.46)

We require A; + Az + A3 = 1, ensuring that the resulting P is a probability distribu-
tion. How should these As be set? One good way is deleted interpolation, developed
by Jelinek and Mercer (1980). In deleted interpolation, we successively delete each
trigram from the training corpus and choose the As so as to maximize the likelihood
of the rest of the corpus. The idea of the deletion is to set the As in such a way as
to generalize to unseen data and not overfit the training corpus. Figure 5.19 gives the
Brants (2000) version of the deleted interpolation algorithm for tag trigrams.

Brants (2000) achieves an accuracy of 96.7% on the Penn Treebank with a trigram
HMM tagger. Weischedel et al. (1993) and DeRose (1988) have also reported accu-
racies of above 96% for HMM tagging. Thede and Harper (1999) offer a number of
augmentations of the trigram HMM model, including the idea of conditioning word
likelihoods on neighboring words and tags.

The HMM taggers we have seen so far are trained on hand-tagged data. Kupiec
(1992), Cutting et al. (1992a), and others show that it is also possible to train an HMM
tagger on unlabeled data, using the EM algorithm that we introduce in Chapter 6. These
taggers still start with a dictionary that lists which tags can be assigned to which words;
the EM algorithm then learns the word likelihood function for each tag and the tag
transition probabilities. An experiment by Merialdo (1994), however, indicates that
with even a small amount of training data, a tagger trained on hand-tagged data worked
better than one trained by EM. Thus, the EM-trained “pure HMM" tagger is probably
best suited to cases for which no training data is available, for example, when tagging
languages for which no data was previously hand-tagged.

Section 3.6. Transformation-Based Tagging 151

function DELETED-INTERPOLATION(corpus) returns A;, Az, Az

Ay —0
Ay 0
Ay 1
foreach trigram t),t;, 83 with () 42,43) =0

depending on the maximum of the following three values
Clty 2 da)—1

case Tl s increment Ay by Cl1,12.83)
C .l
case f{_:;:;]_l : increment Ay by City.12,13)
case 9%_)—[—': increment Ay by C(ty,t2,13)
end
end

normalize Aj, Az, Az
return Aq, Az, Ay

The deleted interpolation algorithm for setting the weights for combining uni-
gram, bigram, and trigram tag probabilities. If the denominator is O for any case, we define the
result of that case to be 0. N is the total number of tokens in the corpus. After Brants (2000).

5.6 Transformation-Based Tagging

Transformarion-

baved learning

Transformation-Based tagging, sometimes called Brill tagging, is an instance of the
transformation-based learning (TBL) approach to machine learning (Brill, 1995). It
draws inspiration from both the rule-based and stochastic taggers. Like the rule-based
taggers, TBL is based on rules that specify what tags should be assigned to what words.
But like the stochastic taggers, TBL is a machine learning technique, in which rules are
automatically induced from the data. Like some but not all of the HMM taggers, TBL
is a supervised learning technique; it assumes a pre-tagged training corpus.

Samuel et al. (1998) offer a useful analogy for understanding the TBL paradigm
which they credit to Terry Harvey. Imagine an artist painting a picture of a white house
with green trim against a blue sky. Suppose most of the picture was sky and hence
most of the picture was blue. The artist might begin by using a very broad brush and
painting the entire canvas blue. Next she might switch to a somewhat smaller white
brush and paint the entire house white. She would just color in the whole house, not
worrying about the brown roof or the blue windows or the green gables. Next she takes
a smaller brown brush and colors over the roof. Now she takes up the blue paint on a
small brush and paints in the blue windows on the house. Finally, she takes a very fine
green brush and does the trim on the gables.

The painter starts with a broad brush that covers a lot of the canvas but colors a
lot of areas that will have 1o be repainted. The next layer colors less of the canvas
but also makes fewer “mistakes”. Each new layer uses a finer brush that corrects less
of the picture but makes fewer mistakes. TBL uses somewhat the same method as
this painter. The TBL algorithm has a set of tagging rules. A corpus is first tagged
according to the broadest rule, that is, the one that applies to the most cases. Then a

152 Chapter 5.

Part-of-Speech Tagging

Template

slightly more specific rule is chosen, which changes some of the original tags. Next
an even narrower rule changes a smaller number of tags (some of which might be
previously changed tags).

5.6.1 How TBL Rules Are Applied

Let's look at one of the rules used by Brill's (1995) tagger. Before the rules apply, the
tagger labels every word with its most likely tag. We get these most likely tags from a
tagged corpus. For example, in the Brown corpus, race is most likely to be a noun:

P(NNjrace) = .98
P(VB|race) = .02

This means that the two examples of race that we saw above will both be coded as
NN. In the first case, this is a mistake since NN is the incorrect tag:

(5.47) is/VBZ expected/VBN to/TO race/NN tomorrow/NN
In the second case this race is correctly tagged as an NN:
(5.48) the/DT race/NN for/IN outer/J] space/NN

After selecting the most likely tag, Brill's tagger applies its transformation rules.
As it happens, Brill's tagger learned a rule that applies exactly to this mistagging of
race:

Change NN to VB when the previous tag is TO

This rule would change race/NN to race/VB in exactly the following situation since
it is preceded by ro/TO:

(5.49) expected/VBN to/TO race/NN — expected/VBN to/TO race/VB

5.6.2 How TBL Rules Are Learned

Brill's TBL algorithm has three major stages. It first labels every word with its most
likely tag. It then examines every possible transformation and selects the one that
results in the most improved tagging. Finally, it then re-tags the data according to this
rule. TBL repeats the last two stages until it reaches some stopping criterion, such as
insufficient improvement over the previous pass. Note that stage two requires that TBL
knows the correct tag of each word; that is, TBL is a supervised learning algorithm.

The output of the TBL process is an ordered list of transformations; these then
constitute a “tagging procedure™ that can be applied to a new corpus. In principle, the
set of possible transformations is infinite since we could imagine transformations such
as “transform NN to VB if the previous word was ‘IBM’ and the word *the” occurs
between 17 and 158 words before that”. But TBL needs to consider every possible
transformation in order to pick the best one on each pass through the algorithm. Thus
the algorithm needs a way to limit the set of transformations. This is done by a small
set of templates (abstracted transformations). Every allowable transformation is an
instantiation of one of the templates. Brill's set of templates is listed in Fig. 5.20.
Figure 5.21 gives the details of this algorithm for learning transformations.

Section 5.7, Evaluation and Error Analysis 153

The preceding (following) word is tagged z.

The word two before (after) is tagged z.

One of the two preceding (following) words is tagged z.

One of the three preceding (following) words is tagged z.

The preceding word is tagged z and the following word is tagged w.

The preceding (following) word is tagged z and the word

two before (after) is tagged w.

QTR Brill’s (1995) templates. Each begins with “Change tag a to rag b when: ... ",
The variables a, b, z, and w range over parts-of-speech.

At the heart of Fig. 5.21 are the two functions GET_BEST_TRANSFORMATION and
GET_BEST_INSTANCE, GET_BEST_-TRANSFORMATION is called with a list of poten-
tial templates; for each template, GET_BEST_TRANSFORMATION calls GET_BEST_-
INSTANCE. GET_BEST_INSTANCE iteratively tests every possible instantiation of each
template by filling in specific values for the tag variables a, b, z, and w.

In practice, there are a number of ways to make the algorithm more efficient. For
example, templates and instantiated transformations can be suggested in a data-driven
manner; a transformation-instance might be suggested only if it would improve the
tagging of some specific word. The search can also be made more efficient by pre-
indexing the words in the training corpus by potential transformation. Roche and Sch-
abes (1997a) show how the tagger can also be speeded up by converting each rule into
a finite-state transducer and composing all the transducers,

Figure 5.22 shows a few of the rules learned by Brill's original tagger.

3.7 Evaluation and Error Analysis

Zelopment test
set
Devetest

The probabilities in a statistical model like an HMM POS-tagger come from the corpus
it is trained on. We saw in Section 4.3 that in order to train statistical models like
taggers or N-grams, we need to set aside a training set. The design of the training
set or training corpus needs to be carefully considered. If the training corpus is too
specific to the task or domain, the probabilities may be too narrow and not generalize
well to tagging sentences in very different domains. But if the training corpus is too
general, the probabilities may not do a sufficient job of reflecting the task or domain.

For evaluating N-grams models, we said in Section 4.3 that we need to divide our
corpus into a distinct training set, test set, and a second test set called a development
test set. We train our tagger on the training set. Then we use the development test
set (also called a dev-test set) to perhaps tune some parameters, and in general decide
what the best model is. Once we come up with what we think is the best model, we
run it on the (hitherto unseen) test set to see its performance. We might use 80% of
our data for training and save 10% each for dev-test and test. Why do we need a
development test set distinct from the final test set? Because if we used the final test
set to compute performance for all our experiments during our development phase, we
would be tuning the various changes and parameters to this set. Our final error rate on
the test set would then be optimistic: it would underestimate the true error rate.

154 Chapter 5.

Part-of-Speech Tagging

Cross-validation

function TBL{corpus) returns fransforms-queue

INITIALIZE=-WITH-MOST-LIKELY-TAGS(corpus)

until end condition is met do
templates — GENERATE-POTENTIAL-RELEVANT-TEMPLATES
best-transform — GET-BEST-TRANSFORM(corpus, templates)
APPLY-TRANSFORM(best-transform, corpus)
ENQUEUE(best-transform-rule, fransforms-queue)

end

returniiransforms-gueue)

function GET-BEST-TRANSFORM(corpus, templates) returns rransform
for each remplate in femplates
(instance, score) «— GET-BEST-INSTANCE(corpus, template)
if (score = best-transform.score) then best-transform — (instance, score)
return(best-transform)

function GET-BEST-INSTANCE(corpus, template) returns fransform
for from-tag — from tag| to tag, do
for to-tag — from tag) to rag, do
for pos«— from 1 to corpus-size do
if (correct-tagi{pos) == to-tag && current-tag(pos) == from-tag)
num-good-transforms{current-tag(pos—1))++
elseif (correci-tag(pos)==from-tag && curreni-tag{pos)==from-iag)
num-bad-transforms(current-tag(pos— 1))++ i
end
best-Z— ARGMAX(num-good-transforms(t) - num-bad-transforms(t))
ifinum-good-transformsibest-Z) - num-bad-rransforms{best-Z)
= best-instance . score) then
besr.rule — “Change tag from from-rag o to-tag if prev tag is besi-2Z"
best score «— num-good-transforms(best-Z) - num-bad-transforms(best-Z)
returni hesr)

procedure APPLY-TRANSFORM(transform, corpus)
for pos+— from 1 to corpus-size do
if (curreni-tag(pos)==best-rule-from)
&% (current-tag(pos— Vi==best-rule-prev))
current-tag(pos)+— best-rule-to

ARl The Brill (1993) TBL algorithm for learmning totag. GET_-BEST_INSTANCE would
change for transformation templates other than “Change tag from X to Y if previous tag is Z°.

The problem with having a fixed training set, devset, and test set is that in order to
save lots of data for training, the test set might not be large enough to be representative.
Thus, a better approach would be to somehow use all our data both for training and
test. How is this possible? The idea is to use cross-validation. In cross-validation.
we randomly choose a training and test set division of our data, train our tagger, and
then compute the error rate on the test set. Then we repeat with a different randomly

Section 5.7. Evaluation and Error Analysis 155

J0-forled
cross-validation

Baseline
Celling

Change tags
From To Condition Example
NN VB previous tag is TO 1o/TO race/NN — VB

VBP VB one of the previous 3 tags is MD might/MD vanish/VBP — VB
NN VB one of the previous 2 tags is MD might/MD not reply/NN — VB
VB NN one of the previous 2 tags is DT

VBD VBN one of the previous 3 tags is VBZ

The first 20 non-lexicalized transformations from Brill (1995).

#
1
2
3
4
5

selected training set and test set. We do this sampling process 10 times and average
these 10 runs to get an average error rate. This is called 10-fold cross-validation.

The only problem with cross-validation is that because all the data is used for test-
ing, we need the whole corpus to be blind; we can’t examine any of the data to suggest
possible features and in general see what's going on. But looking at the corpus is often
important for designing the system. For this reason, it is common to create a fixed
training set and test set, then do 10-fold cross-validation inside the training set, but
compute error rate the normal way in the test set.

Once we have a test set, we evaluate taggers by comparing their labeling of the test
set with a human-labeled gold standard test set, based on accuracy: the percentage
of all tags in the test set where the tagger and the gold standard agree. Most current
tagging algorithms have an accuracy of around 96%-97% for simple tagsets like the
Penn Treebank set. These accuracies are for words and punctuation; the accuracy for
words only would be lower.

How good is 97%7 Since tagsets and tasks differ, the performance of tags can
be compared against a lower-bound baseline and an upper-bound ceiling. One way
to set a ceiling is to see how well humans do on the task. Marcus et al. (1993), for
example, found that human annotators agreed on about 96%-97% of the tags in the
Penn Treebank version of the Brown corpus. This suggests that the gold standard
may have a 3%-4% margin of error and that it is meaningless to get 100% accuracy
{modeling the last 3% would just be modeling noise). Indeed, Ratnaparkhi {1996)
showed that the tagging ambiguities that caused problems for his tagger were exactly
the ones that humans had labeled inconsistently in the training set. Two experiments by
Voutilainen (1995, p. 174), however, found that when humans were allowed to discuss
tags, they reached consensus on 100% of the tags.

Human Ceiling: When using a human Gold Standard to evaluate a classifica-
tion algorithm, check the agreement rate of humans on the standard.

The standard baseline, suggested by Gale et al. (1992a) (in the slightly different
context of word sense disambiguation), is to choose the unigram most likely tag for
each ambiguous word. The most likely tag for each word can be computed from a
hand-tagged corpus (which may be the same as the training corpus for the tagger being
evaluated).

Most Frequent Class Baseline: Always compare a classifier against a base-
line at least as good as the most frequent class baseline (assigning each token
to the class it occurred in most often in the training set).

Tagging algorithms since Harris (1962) incorporate this tag frequency intuition,

156 Chapter 5.

Part-of-Speech Tagging

Paired test

Wilcaxon
signed-rank test
Paired t-test
MeNemar rest

MAPSSWE

Charniak et al. (1993) showed that this baseline algorithm achieves an accuracy of
90%-91% on the 87-tag Brown tagset; Toutanova et al. (2003) showed that a more
complex version, augmented with an unknown word model, achieved 93.69% on the
45-tag Treebank tagset.

When comparing models, it is important to use statistical tests (introduced in any
statistics class or textbook for the social sciences) to determine if the difference be-
tween two models is significant. Cohen (1995) is a useful reference that focuses on
statistical research methods for artificial intelligence. Dietterich (1998) focuses on
statistical tests for comparing classifiers. When statistically comparing sequence mod-
els like part-of-speech taggers, it is important to use paired tests or matched-pairs
tests. Commonly used paired tests for evaluating part-of-speech taggers include the
Wilcoxon signed-rank test, paired t-tests, the McNemar test, and the Matched-Pair
Sentence Segment Word Error (MAPSSWE) test, originally applied to word error rate
in speech recognition.

5.7.1 Error Analysis

In order to improve any model, we need to understand where it went wrong. Ana-
lyzing the error in a classifier like a part-of-speech tagger is done with a confusion
matrix, or contingency table. A confusion matrix for an N-way classification task
is an N-by-N matrix, where the cell (x,v) contains the number of times an item with
correct classification x was classified by the model as y. For example, the following
table shows a portion of the confusion matrix from the HMM tagging experiments of
Franz (1996). The row labels indicate correct tags, column labels indicate the tagger’s
hypothesized tags, and each cell indicates percentage of the overall tagging error. Thus,
4.4% of the total errors were caused by mistagging a VBD as a VBN. Common errors
are highlighted.

IN JJ] NN NNP RB VBD VBN

IN - .2 T

JJ 2 - 33 21 1.7 .2 27
NN 8.7 — 2
NNP 2 33 41 = 2

RB 22 20 5 —

VBD 3 5 — 4.4
YBN 2.8 2.6 s

The confusion matrix above and related error analyses in Franz (1996), Kupiec
(1992), and Ratnaparkhi (1996) suggest some major problems facing taggers:

1. NN versus NNP versus JJ: These are hard to distinguish prenominally, Dis-
tinguishing proper nouns is especially important for information extraction and
machine translation.

2. RP versus RB versus IN: All of these can appear in sequences of satellites
immediately following the verb.

Section 5.8. Advanced Issues in Part-of-Speech Tagging 157

3. VBD versus VBN versus JJ: Distinguishing these is important for partial pars-
ing (participles are used to find passives) and for correctly labeling the edges of
noun phrases.

Error analysis like this is a crucial part of any computational linguistic application.
Error analysis can help find bugs, find problems in the training data, and, most im-
portant, help in developing new kinds of knowledge or algorithms to use in solving
problems.

5.8 Advanced Issues in Part-of-Speech Tagging

Many additional issues must be resolved in order to build a working tagger. In this sec-
tion we introduce some of these, including preprocessing steps for text normalization,
dealing with unknown words, and complications that result when tagging morphologi-
cally rich languages like Czech, Hungarian and Turkish.

5.8.1 Practical Issues: Tag Indeterminacy and Tokenization

Tag indeterminacy arises when a word is ambiguous between multiple tags and is im-
possible or very difficult to disambiguate. In this case, some taggers allow the use of
multiple tags. This is the case in both the Penn Treebank and in the British National
Corpus. Common tag indeterminacies include adjective versus preterite versus past
participle (JJ/VBD/VBN) and adjective versus noun as prenominal modifier (JJ/NN).
Given a corpus with these indeterminate tags, there are three ways to deal with tag
indeterminacy when training and scoring part-of-speech taggers:

1. Somehow replace the indeterminate tags with only one tag.

2. In testing, count a tagger as having correctly tagged an indeterminate token if it
gives either of the correct tags. In training, somehow choose only one of the tags
for the word.

3. Treat the indeterminate tag as a single complex tag.

The second approach is perhaps the most sensible, although most previous published
results seem to have used the third approach. This third approach applied to the Penn
Treebank Brown corpus, for example, results in a much larger tagset of 85 tags instead
of 45, but the additional 40 complex tags cover a total of only 121 word instances out
of the million-word corpus.

Most tagging algorithms assume that a process of tokenization has been applied to
the tags. Chapter 3 discussed the issue of tokenization of periods for distinguishing
sentence-final periods from word-internal periods in words like erc. An additional
role for tokenization is in word splitting. The Penn Treebank and the British National
Corpus split contractions and the ‘s-genitive from their stems:

would™D n"t/RB
children/NNS "s/POS
Indeed, the special Treebank tag POS is used only for the morpheme 's, which must
be segmented off during tokenization.

158 Chapter 5.

Part-of-Speech Tagging

Hapax legomena

Another tokenization issue concerns multipart words. The Treebank tagset assumes
that tokenization of words like New York is done at whitespace, The phrase a New
York City firm is tagged in Treebank notation as five separate words: a/DT New/NNP
YorkiNNP City/NNP firm/NN. The C5 tagset, by contrast, allow prepositions like “in
terms of" to be treated as a single word by adding numbers to each tag. as in in/[13]
terms/l132 offl133.

5.8.2 Unknown Words

wards people

HEVEF HEE —

could be

ondy [

know them
Ishikawa Takuboku 1885-1912

All the tagging algorithms we have discussed require a dictionary that lists the possible
parts-of-speech of every word. But the largest dictionary will still not contain every
possible word, as we see in Chapter 7. Proper names and acronyms are created very
often, and even new common nouns and verbs enter the language at a surprising rate.
Therefore, in order to build a complete tagger, we cannot always use a dictionary to
give us p(w;|t;). We need some method for guessing the tag of an unknown word.

The simplest possible unknown-word algorithm is to pretend that each unknown
word is ambiguous among all possible tags, with equal probability. Then the tagger
must rely solely on the contextual POS-trigrams to suggest the proper tag. A slightly
more complex algorithm is based on the idea that the probability distribution of tags
over unknown words is similar to the distribution of tags over words that occurred only
once in a training set, an idea that was suggested by both Baayen and Sproat (1996)
and Dermatas and Kokkinakis (1995). These words that only occur once are known
as hapax legomena (singular hapax legomenon). For example, unknown words and
hapax legomena are similar in that they are both most likely to be nouns, followed by
verbs, but are very unlikely to be determiners or interjections. Thus, the likelihood
P(wi|t;) for an unknown word is determined by the average of the distribution over all
singleton words in the training set. This idea of using “things we've seen once™ as an
estimator for “things we've never seen” proved useful in the Good-Turing algorithm of
Chapter 4.

Most unknown-word algorithms, however, make use of a much more powerful
source of information: the morphology of the words. For example, words that end
in -5 are likely to be plural nouns (NNS), words ending with -ed tend to be past par-
ticiples (VBN), words ending with able tend to be adjectives (IT), and so on. Even if
we've never seen a word, we can use facts about its morphological form to guess its
part-of-speech. Besides morphological knowledge, orthographic information can be
very helpful. For example, words starting with capital letters are likely to be proper
nouns (NP). The presence of a hyphen is also a useful feature; hyphenated words in the
Treebank version of Brown are most likely to be adjectives (1J). This prevalence of IIs
is caused by the labeling instructions for the Treebank, which specified that prenominal
maodifiers should be labeled as IT if they contained a hyphen.

Section 5.8, Advanced Issues in Part-of-Speech Tagging 159

How are these features combined and used in part-of-speech taggers? One method
is to train separate probability estimators for each feature, assume independence, and
multiply the probabilities. Weischedel et al. (1993) built such a model, based on four
specific kinds of morphological and orthographic features. They used 3 inflectional
endings (-ed, -5, -ing), 32 derivational endings (such as -ion, -al, -ive, and -ly), 4 values
of capitalization depending on whether a word is sentence-initial (+/- capitalization, +/-
initial) and whether the word was hyphenated. For each feature, they trained maximum
likelihood estimates of the probability of the feature given a tag from a labeled training
set. They then combined the features to estimate the probability of an unknown word
by assuming independence and multiplying:

P(w;|t;) = plunknown-word|r;) + p(capital|s;) + p(endings/hyph|s;) (5.50)

Another HMM-based approach, from Samuelsson (1993) and Brants (2000}, gen-
eralizes this use of morphology in a data-driven way. In this approach, rather than
pre-selecting certain suffixes by hand, they consider all final letter sequences of all
words. They consider such suffixes of up to ten letters, computing for each suffix of
length i the probability of the tag r; given the suffix:

F{’:’”n—H] l!n] (Sjl]

These probabilities are smoothed with successively shorter and shorter suffixes.
Separate suffix tries are kept for capitalized and uncapitalized words.

In general, most unknown-word models try to capture the fact that unknown words
are unlikely to be closed-class words like prepositions. Brants models this fact by
computing suffix probabilities only from the training set for words whose frequency in
the training set is < 10. In the HMM tagging model of Thede and Harper (1999), this
fact is modeled instead by training only on open-class words.

Note that Eq. 5.51 gives an estimate of p(t;|w;); since for the HMM tagging ap-
proach we need the likelihood p(wy|t;), we can derive this from Eq. 5.51 by using
Bayesian inversion (i.e., using Bayes rule and computation of the two priors P(t;) and
P[:I’In—i+] ' IIrfjl'}

In addition to using capitalization information for unknown words, Brants (2000}
also uses capitalization for known words by adding a capitalization feature to each
tag. Thus, instead of computing P(#;|t;—1,t-2) as in Eq. 5.44, he actually computes the
probability P(1;, ci|ti—1,ci—1,8i—2,c;—2). This is equivalent to having a capitalized and
uncapitalized version of each tag, essentially doubling the size of the tagset.

A non-HMM based approach to unknown-word detection was that of Brill (19935),
using the TBL algorithm, by which the allowable templates were defined orthographi-
cally (the first ¥ letters of the words, the last N letters of the word, etc.).

Most recent approaches to unknown-word handling, however, combine these fea-
tures in a third way: by using maximum entropy (MaxEnt) models such as the maxi-
mum entropy Markov model (MEMM) first introduced by Ratnaparkhi (1996) and
McCallum et al. (2000); we study MEMMSs in Chapter 6. The maximum entropy
approach is one of a family of log-linear approaches to classification in which many
features are computed for the word to be tagged and all the features are combined in

160 Chapter 5.

Part-of-Speech Tagging

a model based on multinomial logistic regression. The unknown-word model in the
tagger of Toutanova et al. (2003) uses a feature set extended from Ratnaparkhi (1996),
in which each feature represents a property of a word, including features like

word contains a number

word contains an upper-case letter

word contains a hyphen

word is all upper case

word contains a particular prefix (from the set of all prefixes of length < 4)
word contains a particular suffix (from the set of all prefixes of length < 4)
word is upper case and has a digit and a dash (like CFC-12)

word is upper case and followed within 3 words by Co., Inc., etc.

Toutanova et al. (2003) found this last feature, a simple company name detector
looking for a nearby Co. or Inc., particularly useful. Note that the Ratnaparkhi (1996)
model ignored all features with counts less than 10.

Log-linear models have also been applied to Chinese tagging (Tseng et al., 2005b).
Chinese words are very short (around 2.4 characters per unknown word compared with
7.7 ftor English), but Tseng et al. (2005b) found that morphological features still im-
proved tagging performance for unknown words. For example, for each character in an
unknown word and each POS tag, they added a binary feature indicating whether that
character ever occurred with that tag in any training set word. There is also an interest-
ing distributional difference in unknown words between Chinese and English. While
English unknown words tend to be proper nouns (41% of unknown words in WSJ are
NP), in Chinese the majority of unknown words are common nouns and verbs (61% in
the Chinese TreeBank 5.0). These ratios are similar to German and seem to be caused
by the prevalence of compounding as a morphological device in Chinese and German.

5.8.3 Part-of-Speech Tagging for Other Languages

As the previous paragraph suggests, part-of-speech tagging algorithms have all been
applied to many other languages as well. In some cases, the methods work well without
large modifications; Brants (2000) showed exactly the same performance for tagging on
the German NEGRA corpus (96.7%]) as on the English Penn Treebank. But a number
of augmentations and changes become necessary when dealing with highly inflected or
agglutinative languages. '

One problem with these languages is simply the large number of words when com-
pared with English. Recall from Chapter 3 that agglutinative languages like Turkish
(and to some extent mixed agglutinative-inflectional languages like Hungarian) are
those in which words contain long strings of morphemes; and since each morpheme
has relatively few surface forms, it is often possible to clearly see the morphemes in
the surface text. For example, Megyesi (1999) gives the following typical example of
a Hungarian word meaning “of their hits™:

{5.52) talalataiknak

raldl -ar -a - -k -nak
hit/find nominalizer his poss.plur their dat/gen

“of their hits"

Section 5.8. Advanced Issues in Part-of-Speech Tagging 161

Similarly, the following list, excerpted from Hakkani-Tiir et al. (2002), shows a few
of the words producible in Turkish from the root uyu-, ‘sleep™

uyuyorum ‘I am sleeping’ uyuyorsun ‘you are sleeping’

uyaduk — “we slept’ uyumadan ‘without sleeping’

uyuman ‘your sleeping’ uyurken ‘while (somebody) is sleeping’

uyutmak ‘to cause someone to sleep’ uyutturmak ‘to cause someone o cause another
person to sleep’

These productive word-formation processes result in a large vocabulary for these
languages. Oravecz and Dienes (2002), for example, show that a quarter-million-word
corpus of English has about 19,000 different words (i.e., word types); the same size
corpus of Hungarian has almost 50,000 different words. This problem continues even
with much larger corpora; note in the table below on Turkish from Hakkani-Tiir et al.
(2002) that the vocabulary size of Turkish is far bigger than that of English and is
growing faster than English even at 10 million words.

Corpus Size Vocabulary Size
Turkish English

1 million words 106,547 33,398

10 million words 417,775 97,734

The large vocabulary size seems to cause a significant degradation in tagging per-
formance when the HMM algorithm is applied directly to agglutinative languages. For
example, Oravecz and Dienes (2002) applied the same HMM software (called *‘TnT")
that Brants (2000) used to achieve 96.7% on both English and German, and achieved
only 92.88% on Hungarian. The performance on known words (98.32%) was compa-
rable to English results; the problem was the performance on unknown words: 67.07%
on Hungarian, compared with around 84%-85% for unknown words with a compara-
ble amount of English training data. Haji¢ (2000) notes the same problem in a wide
variety of other languages (including Czech, Slovene, Estonian, and Romanian); the
performance of these taggers is hugely improved by the addition of a dictionary that
essentially gives a better model of unknown words. In summary, one difficulty in tag-
ging highly inflected and agglutinative languages is the tagging of unknown words.

A second, related, issue with such languages is the vast amount of information that
is coded in the morphology of the word. In English, lots of information about the syn-
tactic function of a word is represented by word order, or neighboring function words.
In highly inflectional languages, information such as the case (nominative, accusative,
genitive) or gender (masculine, feminine) is marked on the words themselves, and word
order plays less of a role in marking syntactic function. Since tagging is often used in a
preprocessing step for other NLP algorithms such as parsing or information extraction,
this morphological information is crucial to extract. This means that a part-of-speech
tagging output for, say, Czech needs to include information about the case and gender
of each word in order to be as useful as parts-of-speech without case or gender are in
English.

For this reason, tagsets for agglutinative and highly inflectional languages are usu-
ally much larger than the 50-100 tags we have seen for English. Tags in such enriched
tagsets are sequences of morphological tags rather than a single primitive tag. Assign-

162 Chapter 5.

Part-of-Speech Tagging

ing tags from such a tagset to words means that we are jointly solving the problems of
part-of-speech tagging and morphological disambiguation. Hakkani-Tiir et al. (2002)
give the following example of tags from Turkish, in which the word izin has three
possible morphological/part-of-speech tags (and meanings):

1. Yerdeki izin temizlenmesi gerek, iz + Noun+A3sg+Pnon+Gen

The trace on the floor should be cleaned.

2. Ugzerinde parmak izin kalmis iz + Noun+A3sg+P2sg+Nom

Your finger print is left on (it).

3. Igeri girmek igin izin alman gerekiyor. izin + Noun+A3sg+Fnon+Hom

You need a permission to enter.

Using a morphological parse sequence like Noun+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts-of-speech, of course. We can see
this clearly in the morphologically tagged MULTEXT-East corpora, in English, Czech,
Estonian, Hungarian, Romanian, and Slovene {Dimitrova et al., 1998; Erjavec, 2004).
Hajic (2000) gives the following tagset sizes for these corpora:

Language Tagset Size
English 139
Czech 970
Estonian 476
Hungarian 401
Romanian 486
Slovene 1033

With such large tagsets, it is generally necessary to perform morphological analysis
on each word to generate the list of possible morphological tag sequences (i.e., the list
of possible part-of-speech tags) for the word. The role of the tagger is then to disam-
biguate among these tags. The morphological analysis can be done in various ways.
The Hakkani-Tiir et al. (2002) model of Turkish morphological analysis is based on the
two-level morphology we introduced in Chapter 3. For Czech and the MULTEXT-East
languages, Haji¢ (2000) and Haji¢ and Hladka (1998) use a fixed external dictionary
for each language; the dictionary compiles out all the possible forms of each word and
lists possible tags for each wordform. The morphological parse also crucially helps ad-
dress the problem of unknown words since morphological parsers can accept unknown
stems and still segment the affixes properly.

Given such a morphological parse, various methods for the tagging itself can be
used. The Hakkani-Tiir et al. (2002) model for Turkish uses a Markov model of tag
sequences. The model assigns a probability to sequences of tags like

izin+Noun+A3sg+Pnon+Nom
by computing tag transition probabilities from a training set. Other models use similar
techniques to those for English. Haji¢ (2000) and Haji¢ and Hladka (1998), for ex-
ample, use a log-linear exponential tagger for the MULTEXT-East languages, Oravecz
and Dienes (2002) and DZeroski et al. (2000) use the Tn'T HMM tagger (Brants, 2000).
and so on.

Section 5.9, Advanced: The Noisy Channel Model for Spelling 163

5.8.4 Tagger Combination

The various part-of-speech tagging algorithms we have described can also be com-
bined. The most common approach to tagger combination is to run multiple taggers
in parallel on the same sentence and then combine their output, either by voting or by
training another classifier to choose which tagger to trust in a given context. Brill and
Wu (1998), for example, combined unigram, HMM, TBL, and maximum-entropy tag-
gers by voting through a higher-order classifier, and showed a small gain over the best
of the four classifiers. In general, this kind of combination is only useful if the taggers
have complementary errors, and so research on combination often begins by checking
to see if the errors are indeed different from different taggers. Another option is to
combine taggers in series. Haji¢ et al. (2001) apply this option for Czech, using the
rule-based approach to remove some of the impossible tag possibilities for each word
and then using an HMM tagger to choose the best sequence from the remaining tags.

5.9 Advanced: The Noisy Channel Model for Spelling

Newsixy Channel

The Bayesian inference model introduced in Section 5.5 for tagging has another inter-
pretation: as an implementation of the noisy channel model, a crucial tool in speech
recognition and machine translation.

In this section we introduce this noisy channel model and show how to apply it to
the task of correcting spelling errors. The noisy channel model is used in Microsoft
Word and in many search engines; in general it is the most widely used algorithm for
correcting any kind of single-word spelling error, including non-word spelling errors
and real-word spelling errors.

Recall that non-word spelling errors are those that are not English words (like re-
cieve for receive) and that we can detect these by simply looking for any word not in a
dictionary. We saw in Section 3.10 that candidate corrections for some spelling errors
could be found by looking for words that had a small edit distance to the misspelled
word.

The Bayesian models we have seen in this chapter and the noisy channel model,
will give us a better way to find these corrections. Furthermore, we’'ll be able to use
the noisy channel model for contextual spell checking, which is the task of correcting
real-word spelling errors like the following:

They are leaving in about fifieen minuers to go to her house.
The study was conducted mainly be John Black.

Since these errors have real words, we can’t find them by just flagging words not in
the dictionary, and we can’t correct them by just using edit distance alone. But note that
words around the candidate correction in about fifteen minutes make it a much more
probable word sequence than the original in about fifteen minuets. The noisy channel
model implements this idea with N-gram models,

The intuition of the noisy channel model (see Fig. 5.23) is to treat the misspelled
word as it a correctly spelled word had been “distorted™ by being passed through a

164 Chapter 5.

Part-of-Speech Tagging

Bayesian

Vv

original word

guessed word

BTIYOREE] In the noisy channel model, we imagine that the surface form we see is actually
a “distorted” form of an original word passed through a noisy channel. The decoder passes each
hypothesis through a model of this channel and picks the word that best matches the surface
noisy word.

noisy communication channel. This channel introduces “noise™ in the form of substi-
tutions or other changes to the letters, making it hard to recognize the “true” word, Our
goal, then, is to build a model of the channel. Given this model, we then find the true
word by passing every word of the language through our model of the noisy channel
and seeing which one comes the closest to the misspelled word.

This noisy channel model, like the HMM tagging architecture we saw earlier, is a
special case of Bavesian inference. We see an observation O {a misspelled word) and
our job is to find the word w that generated this misspelled word. Out of all possible
words in the vocabulary V we want to find the word w such that P{w|Q) is highest, or:

W = argmax P(w|0) (5.53)
wel
As we saw for part-of-speech tagging, we can use Bayes rule to turn the problem
around (and note that, as for tagging, we can ignore the denominator);

- P(O|w)P(w)
R (7))

To summarize, the noisy channel model says that we have some true underlying
word w, and we have a noisy channel that modifies the word into some possible mis-
spelled surface form. The probability of the noisy channel producing any particular
observation sequence O is modeled by P(0Q|w). The probability distribution over pos-
sible hidden words is modeled by P(w). We can compute the most probable word w
given that we've seen some observed misspelling O by taking the product of the word
prior P{w) and the observation likelihood P{O|w) and choosing the word for which
this product is greatest.

Let’s apply the noisy channel approach to correcting non-word spelling errors. This
approach was first suggested by Kernighan et al. (1990); their program, correct,
takes words rejected by the Unix spell program, generates a list of potential correct

= argmax P(O|w) P(w) (5.54)
=

Section 5.9, Advanced: The Noisy Channel Model for Spelling 165

words, ranks them according to Eq. 5.54, and picks the highest-ranked one. We’ll
apply the algorithm to the example misspelling acress. The algorithm has two stages:
proposing candidate corrections and scoring the candidates.

To propose candidate corrections Kernighan et al. (1990) make the reasonable sim-
plifying assumption (Damerau, 1964) that the correct word will differ from the mis-
spelling by a single insertion, deletion, substitution, or transposition. The list of candi-
date words is generated from the typo by application of any single transformation that
results in a word in a large online dictionary. Applying all possible transformations to
acress yields the list of candidate words in Fig. 5.24.

Transformation
Correct Error Position
Error Correction Letter Letter {Letter #) Type

acress actress t = 2 deletion
acress cress - a 0 insertion
ACTESS Caress ca ac 0 transposition
ACress access c r 2 substitution
acress across o e 3 substitution
acress acres - 2 5 insertion
acress acres - 2 4 insertion
QT R] Candidate corrections for the misspelling acress and the transformations that
would have produced the error (after Kemighan et al. (1990)). “~" represents a null letter,

The second stage of the algorithm scores each correction by Eq. 5.54. Let ¢ repre-
sent the typo (the misspelled word), and let ¢ range over the set C of candidate correc-
tions. The most likely correction is then

likelihood prior

—— =
¢ =argmax P(rlc) Ple) (3.53)
=

The prior probability of each correction P(c) is the language model probability of
the word ¢ in context; in this section for pedagogical reasons we'll make the simpli-
fying assumption that this is the unigram probability P(c), but in practice, in spelling
correction this is extended to trigram or 4-gram probabilities. Let’s use the corpus of
Kernighan et al. (1990), which is the 1988 AP newswire corpus of 44 million words.
Since in this corpus the word actress occurs 1343 times out of 44 million, the word

acres 2879 times, and so on, the resulting unigram prior probabilities are as follows:

€ freq(c) pic)

actress 1343 0000315
cress 0 000000014
caress 4 0000001
access 2280 000058
across 8436 00019
acres 2879 000063

How can we estimate P(r|c)? It is difficult to model the actual channel perfectly
(i.e., computing the exact probability that a word will be mistyped) because it would re-

166 Chapter 3.

Part-of-Speech Tagging

Confusion marrix

quire knowing who the typist was, whether the typist was left-handed or right-handed,
and many other factors. Luckily, it turns out we can get a pretty reasonable estimate
of p(trlc) just by looking at simple local context factors. That's because the most im-
portant factors predicting an insertion, deletion, or transposition are the identity of the
correct letter itself, how the letter was misspelled, and the surrounding context. For ex-
ample, the letters m and n are often substituted for each other; this is partly a fact about
their identity (these two letters are pronounced similarly and they are next to each other
on the keyboard) and partly a fact about context (because they are pronounced simi-
larly and they occur in similar contexts). Kernighan et al. (1990) used a simple model
of this sort. They estimated, for example, p(acress|across) just using the number of
times that the letter ¢ was substituted for the letter o in some large corpus of errors.
This is represented by a confusion matrix, a square 2626 matrix that represents the
number of times one letter was incorrectly used instead of another. For example, the
cell labeled [0,] in a substitution confusion matrix would give the count of times that
e was substituted for 0. The cell labeled [¢,s] in an insertion confusion matrix would
give the count of times that ¢ was inserted after 5. A confusion matrix can be computed
by coding a collection of spelling errors with the correct spelling and then counting the
number of times different errors occurred (Grudin, 1983). Kernighan et al. (1990} used
four confusion matrices, one for each type of single error:

e delx,y| contains the number of times in the training set that the characters xy in
the correct word were typed as x.

e ins|x,y| contains the number of times in the training set that the character x in the
correct word was typed as xy.

e sublx,y| the number of times that x was typed as y.
e trans|x, y| the number of times that xy was typed as yx.

Note that Kernighan et al. (1990) chose to condition their insertion and deletion
probabilities on the previous character; they could also have chosen to condition on the
following character. Using these matrices, they estimated p(r|c) as follows (where ¢p
is the pth character of the word ¢):

r deljepq.ep)

countfc,_ cp * if deletion
insfep 5] .. .
m%[ﬂ , if insertion

subiep.cp)
countfe,] *

E:%[[—S[L;:ﬁ]i . if transposition

Figure 5.25 shows the final probabilities for each of the potential corrections; the
unigram prior is multiplied by the likelihood (computed with Eq. 5.56 and the confu-
sion matrices). The final column shows the “normalized percentage”.

This implementation of the Bayesian algorithm predicts acres as the correct word
{at a total normalized percentage of 45%) and actress as the second most likely word.

Unfortunately, the algorithm was wrong here: The writer's intention becomes clear
from the context: ...was called a “stellar and versatile acress whose combination of

Ptle) = 4 (5.56)

if substitution

N

Real-word error
derection

Sewwtexi-sensitive
spell correction

Section 5.9, Advanced: The Noisy Channel Model for Spelling 167

c freq(c) ple) pitic) p(tje)p(c) %
actress 1343 0000315 000117 3.69 % 1077 37%
cress 0 000000014 00000144 202 x 10714 0%
caress 4 0000001 00000164 1.64 x 1013 0%
access 2280 000058 000000209 1.21 x 10~ 0%
across 8436 00019 0000093 1.77% 1072 18%
acres 2879 000065 0000321 2.09 x 1077 21%
acres 2879 000065 0000342 2.22x107° 23%

Figure 5.25

Computation of the ranking for each candidate correction. Note that the highest
ranked word is not actress but acres (the two lines at the bottom of the table) since acres can be
generated in two ways. The del[], ins[], sub[], and trans|] confusion matrices are given in full in
Kernighan et al. (1990),

sass and glamour has defined her..."”. The surrounding words make it clear that actress
and not acres was the intended word. This is the reason that in practice we use trigram
{or larger) language models in the noisy channel model, rather than unigrams. Seeing
whether a bigram model of P(c) correctly solves this problem is left as Exercise 5.10
for the reader.

The algorithm as we have described it requires hand-annotated data to train the
confusion matrices. An alternative approach used by Kernighan et al. (1990} is to
compute the matrices by iteratively using this very spelling error correction algorithm
itself. The iterative algorithm first initializes the matrices with equal values; thus, any
character is equally likely to be deleted, equally likely to be substituted for any other
character, etc. Next, the spelling error correction algorithm is run on a set of spelling
errors. Given the set of typos paired with their corrections, the confusion matrices can
now be recomputed, the spelling algorithm run again, and so on. This clever method
turns out to be an instance of the important EM algorithm (Dempster et al., 1977),
which we discuss in Chapter 6.

5.9.1 Contextual Spelling Error Correction

As we mentioned above, the noisy channel approach can also be applied to detect and
correct real-word spelling errors, errors that result in an actual word of English. This
can happen from typographical errors (insertion, deletion, transposition) that acciden-
tally produce a real word (e.g., there for three) or because the writer substituted the
wrong spelling of a homophone or near-homophone (e.g., dessert for desert, or piece
for peace). The task of correcting these errors is also called context-sensitive spell
correction. A number of studies suggest that between of 25% and 40% of spelling
errors are valid English words as in the following examples (Kukich, 1992):

They are leaving in about fifteen minuets to go to her house.

The design an construction of the system will take more than a year,
Can they lave him my messages?

The study was conducted mainly be John Black.

We can extend the noisy channel model to deal with real-word spelling errors by
generating a candidate spelling ser for every word in a sentence (Mays et al., 1991).

168 Chapter 5. Part-of-Speech Tagging

The candidate set includes the word itself, plus every English word that would be gen-
erated from the word either by typographical modifications (letter insertion, deletion,
substitution), or from a homophone list. The algorithm then chooses the spelling for
each word that gives the whole sentence the highest probability. That is, given a sen-
tence W = {wj,w2,...,Wg,...,w, }, where wy, has alternative spelling wi, w}, etc., we
choose from among these possible spellings the spelling that maximizes P(W), by us-
ing the N-gram grammar to compute P(W).

More recent research has focused on improving the channel model P(t|c), such
as by incorporating phonetic information or allowing more complex errors (Brill and
Moore, 2000; Toutanova and Moore, 2002). The most important improvement to the
language model P(c) is to use very large contexts, for example, by using the very
large set of 5-grams publicly released by Google in 2006 (Franz and Brants, 2006).
See Norvig (2007) for a nice explanation and a Python implementation of the noisy
channel model; the end of the chapter has further pointers.

5.10 Summary

This chapter introduced the idea of parts-of-speech and part-of-speech tagging. The
main ideas:

» Languages generally have a relatively small set of closed class words that are
often highly frequent, generally act as function words, and can be ambiguous in
their part-of-speech tags. Open-class words generally include various kinds of
nouns, verbs, adjectives. There are a number of part-of-speech coding schemes,
based on tagsets of between 40 and 200 tags.

¢ Part-of-speech tagging is the process of assigning a part-of-speech label to each
of a sequence of words. Rule-based taggers use hand-written rules to distinguish
tag ambiguity. HMM taggers choose the tag sequence that maximizes the prod-
uct of word likelihood and tag sequence probability, Other machine learning
models used for tagging include maximum entropy and other log-linear models,
decision trees, memory-based learning, and transformation-based learning.

s The probabilities in HMM taggers are trained on hand-labeled training corpora,
combine different N-gram levels by using deleted interpolation, and incorporate
sophisticated unknown word models.

¢ Given an HMM and an input string, the Viterbi algorithm can decode the optimal
tag sequence.

o Taggers are evaluated by comparison of their output from a test set 10 human
labels for that test set. Error analysis can help pinpoint areas in which a tagger
doesn’t perform well.

Bibliographical and Historical Notes 169

Bibliographical and Historical Notes

The earliest implemented part-of-speech assignment algorithm may have been part of
the parser in Zellig Harris's Transformations and Discourse Analysis Project (TDAP),
which was implemented between June 1958 and July 1959 at the University of Penn-
sylvania (Harris, 1962). Previous natural language processing systems had used dic-
tionaries with part-of-speech information for words but have not been described as
performing part-of-speech disambiguation. As part of its parsing, TDAP did part-of-
speech disambiguation with 14 hand-written rules, whose use of part-of-speech tag
sequences prefigures all modern algorithms and whose run order was based on the rel-
ative frequency of tags for a word. The parser/tagger was reimplemented recently and
is described by Joshi and Hopely (1999) and Karttunen (1999), who note that the parser
was essentially implemented (in a modern way) as a cascade of finite-state transducers.

Scon after the TDAP parser was the Computational Grammar Coder (CGC) of
Klein and Simmons (1963). The CGC had three components: a lexicon, a morpholog-
ical analyzer, and a context disambiguator. The small 1500-word lexicon included ex-
ceptional words that could not be accounted for in the simple morphological analyzer,
including function words as well as irregular nouns, verbs, and adjectives. The mor-
phological analyzer used inflectional and derivational suffixes to assign part-of-speech
classes. A word was run through the lexicon and morphological analyzer to produce
a candidate set of parts-of-speech. A set of 500 context rules was then used to dis-
ambiguate this candidate set by relying on surrounding islands of unambiguous words.
For example, one rule said that between an ARTICLE and a VERB, the only allowable
sequences were ADJ-NOUN, NOUN-ADVERB, or NOUN-NOUN. The CGC algo-
rithm reported 90% accuracy on applying a 30-tag tagset to articles from the Scientific
American and a children’s encyclopedia.

The TAGGIT tagger (Greene and Rubin, 1971) was based on the Klein and Simmons
(1963) system, using the same architecture but increasing the size of the dictionary and
the size of the tagset to 87 tags. For example, the following sample rule states that a
word x is unlikely to be a plural noun (NINS) before a third person singular verb (VBZ):

1 VBZ — not NNS

TAGGIT was applied to the Brown corpus and, according to Francis and Kuera
(1982, p. 9), “resulted in the accurate tagging of 77% of the corpus™ (the remainder of
the Brown corpus was tagged by hand).

In the 1970s, the Lancaster-Oslo/Bergen (LOB) corpus was compiled as a British
English equivalent of the Brown corpus. It was tagged with the CLAWS tagger (Mar-
shall, 1983, 1987; Garside, 1987), a probabilistic algorithm that can be viewed as an
approximation to the HMM tagging approach. The algorithm used tag bigram probahil-
ities, but instead of storing the word likelihood of each tag, the algorithm marked tags
either as rare (P(tag|word) < .01) infrequent (P(tag|word) < .10) or normally frequent
(P(tag|word) > .10),

The probabilistic PARTS tagger of Church (1988) was close to a full HMM tagger.
[t extended the CLAWS idea to assign full lexical probabilities to each word/tag com-
bination and used Viterbi decoding to find a tag sequence. Like the CLAWS tagger,
however, it stored the probability of the tag, given the word

170 Chapter 5.

Part-of-Speech Tagging

P(lag|word) * P(tag|previous n tags) (5.57)
rather than using the probability of the word, given the tag, as an HMM tagger does:

P(word|tag) + P(tag|previous n tags) (5.58)

Later taggers explicitly introduced the use of the hidden Markov model, often with
the EM training algorithm (Kupiec, 1992; Merialdo, 1994; Weischedel et al., 1993),
including the use of variable-length Markov models (Schiitze and Singer, 1994).

Most recent tagging algorithms, like the HMM and TBL approaches we have dis-
cussed, are machine leaming classifiers that estimate the best tag-sequence for a sen-
tence, given various features such as the current word, neighboring parts-of-speech or
words, and unknown word features such as orthographic and morphological features.
Many kinds of classifiers have been used to combine these features, including deci-
sion trees (Jelinek et al., 1994; Magerman, 1995), maximum entropy models (Ratna-
parkhi, 1996), other log-linear models (Franz, 1996), memory-based learning (Daele-
mans et al., 1996), and networks of linear separators (SNOW) (Roth and Zelenko,
1998).

Most machine leamning models seem to achieve relatively similar performance given
similar features, roughly 96%-97% on the Treebank 45-tag tagset on the Wall Street
Journal corpus. As of the writing of this chapter, the highest-performing published
model on this WSI Treebank task is a log-linear tagger that uses information about
neighboring words as well as tags and a sophisticated unknown-word model, achieving
97.24% accuracy (Toutanova et al., 2003). Most such models are supervised, although
work is beginning on unsupervised models (Schiitze, 1995; Brill, 1997; Clark, 2000,
Banko and Moore, 2004; Goldwater and Griffiths, 2007).

Readers interested in the history of parts-of-speech should consult a history of lin-
guistics such as Robins (1967) or Koemer and Asher (1995), particularly the article
by Householder (1995) in the latter. Sampson (1987) and Garside et al. (1997) give a
detailed summary of the provenance and makeup of the Brown and other tagsets. More
information on part-of-speech tagging can be found in van Halteren (1999),

Algorithms for spelling error detection and correction have existed since at least
Blair (1960). Most early algorithms were based on similarity keys like the Soundex al-
gorithm discussed in the exercises on page 81 (Odell and Russell, 1922; Knuth, 1973).
Dameran (1964) gave a dictionary-based algorithm for error detection; most error-
detection algorithms since then have been based on dictionaries. Damerau also gave
a correction algorithm that worked for single errors. Most algorithms since then have
relied on dynamic programming, beginning with Wagner and Fischer (1974). Kukich
(1992) wrote the definitive survey article on spelling error detection and correction.
Modern algorithms are based on statistical or machine learning algorithm, following,
for example, Kashyap and Oommen (1983) and Kernighan et al. (1990).

Recent approaches to spelling include extensions to the noisy channel model (Brill
and Moore, 2000; Toutanova and Moore, 2002) as well as many other machine learning
architectures such as Bayesian classifiers (Gale et al., 1993; Golding, 1997; Golding
and Schabes, 1996), decision lists (Yarowsky, 1994), transformation-based learning
(Mangu and Brill, 1997), latent semantic analysis (Jones and Martin, 1997), and Win-

Exercises 171

Exercises

now (Golding and Roth, 1999). Hirst and Budanitsky (2005) explore the use of word
relatedness: see Chapter 20. Noisy channel spelling correction is used in a number of
commercial applications, including the Microsoft Word contextual spell checker.

5.1 Find one tagging error in each of the following sentences that are tagged with
the Penn Treebank tagset:

1. UFRF need/VBP /DT flight/NN from/IN Atlanta/NN

2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS

3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

4. Can/VBP you/PRP list/'VB the/DT nonstop/]] afternoon/NN flights/NNS

5.2 Use the Penn Treebank tagset to tag each word in the following sentences from
Damon Runyon’s short stories. You may ignore punctuation. Some of these are
quite difficult; do your best.

I. Ttis a nice night.

2. This crap game is over a garage in Fifty-second Street. ..

3. ... Nobody ever takes the newspapers she sells . ..

4. He s atall, skinny guy with a long, sad, mean-looking kisser, and a mourn-
ful voice.

5. ...Tam sitting in Mindy’s restaurant putting on the gefillte fish, which is a
dish [am very fond of, ...

6. When a guy and a doll get to taking peeks back and forth at each other, why
there you are indeed.

5.3 Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

5.4 Now tag the sentences in Exercise 5.2; use the more detailed Brown tagset in
Fig. 5.7.

5.5 Implement the TBL algorithm in Fig. 5.21. Create a small number of templates
and train the tagger on any POS-tagged training set you can find.

5.6 Implement the “most likely tag” baseline. Find a POS-tagged training set, and
use it to compute for each word the tag that maximizes p(f|w). You will need
to implement a simple tokenizer to deal with sentence boundaries. Start by as-
suming that all unknown words are NN and compute your error rate on known
and unknown words. Now write at least five rules to do a better job of tagging
unknown words, and show the difference in error rates.

5.7 Recall that the Church (1988) tagger is not an HMM tagger since it incorporates
the probability of the tag given the word:

P(tag|word) = P(tag|previous n tags) (5.59)

rather than using the likelihood of the word given the tag, as an HMM tagger
does:

172 Chapter 5.

Part-of-Speech Tagging

5.8

59

5.10

311

P(word|tag) # P(tag|previous n tags) (5.60)

Interestingly, this use of a kind of “reverse likelihood” has proven to be useful
in the modern log-linear approach to machine translation (see page 903). As a
gedanken-experiment, construct a sentence, a set of tag transition probabilities,
and a set of lexical tag probabilities that demonstrate a way in which the HMM
tagger can produce a better answer than the Church tagger, and create another
example in which the Church tagger is better.

Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled training set,
train the transition and observation probabilities of the HMM tagger directly on
the hand-tagged data. Then implement the Viterbi algorithm from this chapter
and Chapter 6 so that you can decode (label) an arbitrary test sentence. Now run
your algorithm on the test set. Report its error rate and compare its performance
to the most frequent tag baseline.

Do an error analysis of your tagger. Build a confusion matrix and investigate the
most frequent errors. Propose some features for improving the performance of
your tagger on these errors.

Compute a bigram grammar on a large corpus and re-estimate the spelling cor-
rection probabilities shown in Fig. 5.25 given the correct sequence . .. was called
a “stellar and versatile acress whose combination of sass and glamour has de-
Sined her. .. ”. Does a bigram grammar prefer the correct word actress?

Read Norvig (2007) and implement one of the extensions he suggests to his
Python noisy channel spellchecker.

